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Abstract

This paper presents a rate distortion approach to Markov graph learning. It provides lower

bounds on the number of samples required for any algorithm to learn the Markov graph structure

of a probability distribution, up to edit distance. In particular, for both Ising and Gaussian

models on p variables with degree at most d, we show that at least Ω((d − s
p ) log p) samples

are required for any algorithm to learn the graph structure up to edit distance s. Our bounds

represent a strong converse; i.e., we show that for a lower number of samples, the probability

of error goes to 1 as the problem size increases. These results show that substantial gains in

sample complexity may not be possible without paying a significant price in edit distance error.

1 Introduction

Markov networks, also known as (undirected) graphical models, describe the interdependencies (or

the lack of thereof) among a collection of random variables using an undirected graph. As such, they

have been used for modeling and designing applications in a multitude of settings, for example, social

network modeling [1], [2], image processing/computer vision [3], [4] and computational biology [5],

[6]. The problem of learning the graph structure of a Markov network from samples generated by the

underlying graph structure is a well-studied one and is referred to as the problem of graphical model

selection. There is diverse literature on various aspects of learning graphical models, from statistical

physics to computational learning theory. It is only relatively recently that the information theoretic

limits for the problem of graphical model selection are being better understood.

An understanding of the information theoretic limits of high-dimensional learning problems

in general, and the problem of graphical model selection in particular, provides us with sample

complexity bounds corresponding to lower bounds for learning. A useful tool used for obtaining

these bounds is Fano’s inequality and its generalizations [7]. However, Fano’s inequality results in

weak converse bounds – the typical result obtained for graphical model selection problem is that if

the number of observed samples available to a learning algorithm falls below a certain threshold,

the probability of error is bounded away from zero (for example, exceeds 1/2). Therefore, alternate
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information-theoretic tools are required for stronger bounds on sample complexity. This motivates

the the formulation of strong converse type results, in the same spirit as in the case of noisy

channel coding [8]. In other words, we desire results for the graphical model selection problem

that state that unless the number of available samples exceeds some threshold, the probability

of error in learning the structure of a Markov network goes to 1 as the problem size increases.

Such information-theoretic limits are important as they provide an understanding of settings where

recovery is impossible, regardless of the algorithm or the cleverness of its design.

In this paper, we focus on reconstruction of the graph structure of a Markov network within a

pre-specified distortion, rather than exact reconstruction. As an overarching goal, we are interested

in characterizing the rate-distortion limits of the problem of graphical model selection. We restrict

ourselves to Markov networks whose underlying graphical structures have bounded degree. We

derive detailed results for two well-known families – Ising models and Gaussian Markov networks.

The distortion metric we choose is edit distance, that we define in the next section.

1.1 Related Work

There is a significant body of literature in the context of deriving the information-theoretic limits

on the sample complexity for exact learning of Markov networks, especially the specialized cases

of Ising models [9], [10], and Gaussian Markov networks [11], [12]. The graph ensembles that

have been considered include degree-bounded graphs [9]–[12],[13], graphs with limited edges [9]

and random graphs [10], [12]. A common theme in deriving these theoretical bounds is to treat the

graphical model selection problem as a noisy channel coding problem and apply Fano’s inequality

to characterize the limits. The graphical model selection problem in presence of distortion has been

examined in [12] for the ensemble of Erdös-Rényi graphs. The only known strong converse results

have been derived in [10] and [14], for the cases of exact reconstruction of Ising models based on

Erdös-Rényi graphs and Gaussian Markov networks based on degree-bounded graphs respectively.

The performance of graphical model learning algorithms, that output a set of graphs instead of a

single one (similar to list-decoding), is examined in [15] for Gaussian and Ising models.

1.2 Summary of Results

We provide a comparison of our results in this paper vs. existing ones in literature in Table 1.

All the results are for the ensemble of graphs on p nodes with degree at most d. Our results are

highlighted in bold face. s denotes the maximum allowed edit distance between the original and

recovered graphs. All existing results in literature are for the case of exact recovery, i.e., s = 0.

It is known that the edge weights play an important role in determining the complexity of

learning graphical models [16]. However this dependency is complex in general. For instance both

very low edge weights and very large edge weights increase the sample complexity of learning the
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Table 1: Comparison with existing results

Model Edge weight = Θ
(
1
d

)
Edge weight = Θ

(
1√
d

)
Ising

Ω(d2 log p) [9] Ω(
√
d exp(

√
d) log p) [9]

Ω
((

d− 8s
p

)
log p

)
Ω
((

d− 8s
p

)
log p

)
Gaussian

Ω
(
d2 log p

)
[11] Ω (d log p) [11]

Ω
(√

d
(
d− 4s

p

)
log p

)
Ω
((

d− 4s
p

)
log p

)
graphical model - the first because of difficulty in recognizing the presence of an edge and the latter

because of large range correlations. Existing results show significant difference in lower bounds for

edge weight scaling as Θ
(
1
d

)
as opposed to Θ

(
1√
d

)
. However, in this paper, we are able to show

different lower bounds for the Gaussian case but not for the Ising model. A detailed description as

well as comparison of our results with the existing ones is done in Section 6.

The rest of this paper is organized as follows. We discuss some preliminaries and introduce

the system model in Section 2. We consider the problem of learning graph structure up to a

pre-specified distortion value (edit distance) and give strong limits on the sample complexity for

arbitrary ensembles, Ising models and Gaussian Markov networks in Sections 3, 4 and 5 respectively.

We finally conclude the paper with Section 6 and present the proofs in the appendix.

2 Preliminaries

We consider an undirected graph G = (V,E), where V = {1, . . . , p} is the set of nodes and

E ⊂ V × V is the set of edges. A Markov network is obtained by associating a random variable

Xi to node i ∈ V , that takes values from an alphabet set A, and specifying a joint probability

distribution p over vector X := (X1, X2, . . . , Xp) that satisfies the following property:

p(xA, xB|xC) = p(xA|xC)p(xB|xC),

where A,B and C are any disjoint subsets of V such that every path in G from A to B passes

through C, and xA, xB and xC denote the restrictions of (x1, . . . , xp) ∈ Ap to indices in A,B and C

respectively. Note that p(·) denotes p.m.f. in the discrete case (i.e., A is a finite set) and p.d.f. in

the continuous case (i.e., A = R and the distribution is a continuous function). We briefly describe

the families of discrete and continuous graphical models considered in this paper.

Ising Model: This is a discrete probability distribution that is widely studied in statistical

physics [17], and applicable to fields like computer vision [18] and game theory [19]. In this paper we

consider a special case of Ising model, called the zero field binary Ising model. Here the alphabet is
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A = {−1, 1}. Given an undirected graph G on p nodes and weight θij ∈ R for each edge (i, j) ∈ E,

the probability of a configuration x = (x1, x2, . . . , xp) ∈ Ap is given by the following expression:

p (x) =
exp

(∑
(i,j)∈E θijxixj

)
∑

x∈Ap exp
(∑

(i,j)∈E θijxixj

) .
Gaussian Graphical Model: This is one of the most well known families of continuous

Markov networks. Here X has a multivariate Gaussian distribution. Without any loss of generality,

it can be assumed that X has zero mean. Given an undirected graph G on p nodes and a p × p
positive definite matrix Θ, the p.d.f. of X is given by the following expression:

p(x) =
1√

(2π)p|Θ−1|
exp

(
−1

2
xTΘx

)
,

where x = (x1, . . . , xp) ∈ Rp. Θ is the inverse covariance matrix and is such that Θ(i, j) 6= 0 if

and only if (i, j) ∈ E. Θ is also called the potential matrix, since Θ(i, j) can be interpreted as the

potential of edge (i, j) ∈ E. The following quantity, called minimum magnitude of partial corelation

coefficient, plays an important role in determining the complexity of the structure learning problem:

λ∗(Θ) := min
(i,j)∈E

|Θ(i, j)|√
Θ(i, i)Θ(j, j)

.

This quantity is invariant to rescaling of the random variables and can be thought of as the minimum

magnitude of a non-zero entry after normalizing the diagonal terms of Θ to one.

In this paper we restrict our attention to the ensemble of degree bounded graphs in light of the

fact that extensive work on learning graphical models focus on these graphs. We denote the set of

all graphs on p nodes and maximum degree d by Gp,d. We also denote the set of all graphs on p

nodes by Up. For any two graphs G and H on the same set of nodes, we define the edit distance

∆(G,H) as the minimum number of edge deletions and insertions required to convert G to H. In

other words, ∆(G,H) is the cardinality of the symmetric difference between edge sets of G and H.

2.1 Learning Algorithm and Error Criterion

We consider an ensemble of undirected graphs on a common set of p nodes, G = {G1, . . . , GM}, and

an ensemble of Markov networks K = {K1, . . . ,KM}, such that Ki is associated with Gi and the

random variables X = (X1, . . . , Xp) draw values from alphabet A. We choose a Markov network

K ∈ K uniformly at random and obtain n i.i.d. vector samples Xn = (X(1), . . . , X(n)) from the

distribution specified by K. The problem we consider is to reconstruct the graph G associated

with K given the samples Xn. This is also known as the problem of graphical model selection. A
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function φ : Anp → Up that maps the observed samples to an estimated graph Ĝ = φ(Xn) ∈ Up
is called a learning algorithm. Given a pre-specified s, we define the error event for the learning

algorithm as {∆(G,φ(Xn)) ≥ s}, i.e., the algorithm is correct only if the edit distance between the

actual and estimated graphs is less than s. Then the probability of error can be defined as

P (n)
e (φ) = P (∆(G,φ(Xn)) ≥ s) =

1

M

M∑
i=1

P (∆(Gi, φ(Xn)) ≥ s|K = Ki) .

In this paper, we derive lower bounds on the sample size n, in terms of the ensemble parameters,

for any learning algorithm to reliably recover the underlying graph of a Markov network up to an

edit distance of s. We do this by bounding P
(n)
e (φ) in terms of n and the ensemble parameters.

3 Lower Bounds for Arbitrary Ensembles

In this section, we state our result for lower bounds on the sample complexity for arbitrary ensembles

of graphical models. We consider the same setup as described in Section 2.1. We have an ensemble

of Markov network models K and the corresponding ensemble of undirected graphs G on p nodes.

We choose a Markov network K ∈ K uniformly at random and obtain n i.i.d. sample vectors from

its joint distribution. Our aim is to analyze the performance of any learning algorithm φ : Anp → Up
and bound its probability of error. For this we define the following quantities for G ∈ G:

B(s,G) = {H : ∆(G,H) < s,H ∈ Up} ,

B(s,G) = max
G∈G
|B(s,G)| .

B(s,G) represents the maximum number of graphs in Up that are at an edit distance of at most s

from any graph in G. We also define another quantity, similar in structure to mutual information:

I(Ki;X
(1)) =

H(X(1))−H(X(1)|K = Ki) if |A| <∞,

h(X(1))− h(X(1)|K = Ki) if A = R.

We define a lower bound R and an upper bound C on the following quantities:

R ≤ logM − logB(s,G), (1)

C ≥ max
1≤i≤M

I(Ki;X
(1)). (2)

Then we have the following theorem which establishes a necessary condition on the number of

samples n for consistent recovery of the graphical model using any learning algorithm.
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Theorem 1. Consider an ensemble of Markov networks K = {K1, . . . ,KM} and the corresponding

ensemble of undirected graphs on p nodes, G = {G1, . . . , GM}. Suppose the random variables take

values from alphabet A. If the number of samples satisfies n < R
C then for any learning algorithm,

we have the following lower bound on the probability of error:

P (n)
e (φ) ≥ 1− 4nA (K)

(R− nC)2
− 2−

(R−nC)
2 .

Here error means that the edit distance between the original and recovered graphs exceeds s and

A (K) = max
1≤i≤M

var

(
log

p
(
X(1)

∣∣K = Ki

)
p(X(1))

∣∣∣∣∣K = Ki

)
.

where p(·) stands for p.m.f. in the discrete case and p.d.f. in the continuous case.

If we find a good upper bound for A (K) for a given ensemble, we can use Theorem 1 to show

that P
(n)
e → 1 in the high dimensional setting as p → ∞ and n < R

C . We pursue this approach in

the next two sections to prove results for ensembles of Ising and Gaussian graphical models.

4 Lower Bounds for Ising Models

Our main result in this section is the following theorem which characterizes a lower bound on

the number of samples required for consistent recovery of graphical model from an ensemble KIp,d,
whose construction is described below. For each graph G ∈ Gp,d, consider the corresponding Ising

model with all edge parameters equal to θ where θ ∈
(

0, 1√
d

)
. We denote this ensemble of Ising

models by KIp,d. Note that there is a bijection between graphs in Gp,d and models in KIp,d.

Theorem 2. Suppose K is chosen uniformly at random from KIp,d. If d = o(pα) for some 0 ≤ α < 1,

s < (1−α)
16 pd and the number of samples n, available to a learning algorithm, satisfies

n <
1

2

[(
d

4
− 2s

p

)
log p− d

4
log 8d+

s

p
log

2s

e
− log s

p

]
= Ω

((
(1− α)d− 8s

p

)
log p

)
,

then for any graphical model learning algorithm, the probability of error P
(n)
e → 1 as p→∞.

Proof strategy for Theorem 2: The proof of Theorem 2 follows from establishing the bounds

R and C in (1) and (2) and then using Theorem 1. Lemmas 1 and 2 establish such bounds R and

C respectively. A complete proof of Theorem 2 can be found in the appendix. We list the graphs in

Gp,d as {G1, . . . , GM} and the corresponding Ising models in KIp,d as {K1, . . . ,KM}. Now we state

the following two lemmas bounding R and C for this ensemble.
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Lemma 1. For graph ensemble Gp,d with d ≤ (p−1)
2 and s ≤ p(p−1)

4 , the following bounds hold:

logM ≥ pd

4
log

p

8d
, B(s,Gp,d) < s

(
p2/2

s

)
.

Lemma 2. Suppose K is chosen uniformly at random from KIp,d. Then we have

max
i
I(Ki;X

(1)) ≤ p.

5 Lower Bounds for Gaussian Markov Graphs

Our main result in this section is a lower bound on the number of samples required for consistent

recovery of graphical model from an ensemble of Gaussian Markov networks KGp,d, which is con-

structed as follows. Without loss of generality, we assume that p is even. We choose d perfect

matchings on p nodes, each perfect matching chosen uniformly at random, and form a multigraph

resulting from the union of the matchings. We refer to the set of all such multigraphs on p nodes,

constructed in this fashion, as H. The uniform distribution on the set of perfect matchings also

defines a probability distribution over H. We have the following lemma for this distribution [20]:

Lemma 3. Consider a multigraph H = (V,E), V = {1, 2, . . . , p}, formed from the union of d

random perfect matchings on V , the matchings being chosen according to a uniform distribution.

Suppose the eigenvalues of the (weighted) adjacency matrix of H, denoted by A, are d = λ1(A) ≥
λ2(A) ≥ · · · ≥ λp(A). Define ρ(A) = max2≤i≤p |λi(A)|. Then the following result holds:

P (ρ(A) < 3
√
d) ≥ 1− c

pτ
,

where c is a positive real and τ =
⌈√

d−1+1
2

⌉
− 1.

Next, we eliminate the multigraphs from H whose (weighted) adjacency matrices A satisfy

ρ(A) ≥ 3
√
d and get a reduced set H′. By Lemma 3, H\H′ forms a small fraction of H as p→∞.

We fix constants λ ∈
(

0, 1
4
√
d

)
, δ > 0 and define µ := δ

λ−1−4
√
d
. Then for every multigraph H ∈ H′,

we generate a p× p matrix Θ = (4
√
dµ+ δ)Ip + µA, where Ip is the p× p identity matrix and A is

the (weighted) adjacency matrix of multigraph H. We refer to the resulting set of these matrices

as T . Then the following property holds for this set:

Lemma 4. The matrices in T are symmetric and positive definite.

Proof. By construction, any matrix Θ ∈ T has the form Θ = (4
√
dµ + δ)Ip + µA, where A is the

(weighted) adjacency matrix of some multigraph H ∈ H′, which makes it symmetric. Also, the

construction of H′ ensures that ρ(A) < 3
√
d. Therefore, the minimum eigenvalue of Θ is at least
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4
√
dµ+ δ − ρ(A)µ >

√
dµ+ δ > 0. This and the symmetry of Θ ensure that all the eigenvalues of

Θ are positive. Hence Θ ∈ T is a symmetric and positive definite matrix.

Note that the choice of µ ensures that λ∗(Θ) = λ for Θ ∈ T . Lemma 4 suggests that the matrices

of T can be the inverse covariance matrices of Gaussian Markov networks. By construction, the

underlying graph of each of these Markov networks comes from Gp,d. We denote this ensemble of

Gaussian Markov networks by KGp,d and the corresponding graph ensemble by G′p,d ⊆ Gp,d.

Theorem 3. Suppose K is chosen uniformly at random from KGp,d. If d = o(pα) for some 0 ≤ α <
1
2 , s < (1−2α)

8 pd and the number of samples n, available to a learning algorithm, satisfies

n <

(
d− 4s

p

)
log p− 2d log 2d+ 2s

p log 2s
e −

2 log s
p − 2

p

2 log
(

1 + 4
√
d

λ−1−4
√
d

) = Ω


(

(1− 2α)d− 4s
p

)
log p

log
(

1 + 4
√
d

λ−1−4
√
d

)
 ,

then for any graphical model learning algorithm, the probability of error P
(n)
e → 1 as p→∞.

Proof strategy for Theorem 3: Analogous to the proof of Theorem 2, the proof of Theorem

3 follows from establishing the bounds R and C in (1) and (2) and then using Theorem 1. Lemmas

5 and 6 establish such bounds R and C respectively. A complete proof of Theorem 3 can be found

in the appendix. We list the graphs in G′p,d as {G1, . . . , GM} and the Gaussian models in KGp,d as

{K1, . . . ,KM}. Now we state the following two lemmas bounding R and C for this ensemble.

Lemma 5. For graph ensemble G′p,d, the following bounds hold for large enough p:

logM ≥ pd

2
log

p

4d2
− 1, B(s,G′p,d) < s

(
p2/2

s

)
.

Lemma 6. Suppose K is chosen uniformly at random from KG
p,d. Then we have

max
i
I(Ki;X

(1)) ≤ p

2
log

(
1 +

4
√
d

λ−1 − 4
√
d

)
.

6 Conclusion & Discussion

Remarks about Theorems 2 & 3: Specializing our result to the case of exact recovery, i.e.,

setting s = 0 yields weaker lower bounds on sample complexity than existing results. However, for

the Gaussian case [11] with edge weights Θ
(

1√
d

)
our result matches the existing result, and for

both the Ising [9] and Gaussian [11] cases with edge weights Θ
(
1
d

)
, our result is only a factor of d

and
√
d away respectively from existing results. This gap is either due to a limitation of our proof
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technique or due to the difference in the kind of guarantee. Specifically, the lower bound results in

[9] and [11] use Fano’s inequality to obtain a weak converse i.e., if the number of samples n scales

below a certain threshold then the probability of error is lower-bounded by a constant as p → ∞.

On the other hand our result establishes a strong converse i.e., if the number of samples n scales

below a certain threshold then as p→∞ the probability of error converges to 1.

In this paper, we develop a rate-distortion framework for graph learning, where we characterize

lower bounds on sample complexity within a given distortion criterion. We use a strong converse

framework to derive these bounds, indicating that it is near-impossible to learn the graphical model

with any fewer samples. Our results show that, for both Ising and Gaussian models on p variables

with maximum degree d, at least Ω
((
d− s

p

)
log p

)
samples are required for any learning algorithm

to recover the graph structure to within edit distance s.
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mation theory [8]. We prove the theorem for the case where A is a finite set and K is an ensemble

of discrete Markov networks. The proof for the case when A = R and K is an ensemble of Markov

networks with continuous density functions goes along the same line.
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We fix ε > 0 and define the following sets:

Bi =

{
xn ∈ Anp : log

p(xn|K = Ki)

p(xn)
≥ n(C + ε)

}
, i = 1, 2, . . . ,M.

The set Bi tries to capture all points in the sample space where the random variable log p(Xn|K=Ki)
p(Xn)

is greater than its mean conditioned on K = Ki (strictly speaking, it only contains a subset of

those points since C is an upper bound on the mean of the random variable).

Given a learning algorithm φ : Anp → Up, we define the following sets:

Ri = {xn ∈ Anp : ∆(φ(xn), Gi) < s}, i = 1, 2, . . . ,M,

Si = {xn ∈ Anp : φ(xn) = Gi}, i = 1, 2, . . . ,M.

Ri is the set of points in the sample space for which we have correct recovery if K = Ki and Si
is the set of points in the sample space for which the learning algorithm returns Gi. Enumerating

the graphs in B(s,Gi) as Gi1 , . . . , Gik we see that Ri = ∪kt=1Sit . Note that Si ∩ Sj = φ for i 6= j.

The probability of correct decoding by the learning algorithm is given by

P (n)
c =

1

M

M∑
i=1

∑
xn∈Ri

p(xn|K = Ki)

=
1

M

M∑
i=1

∑
xn∈Ri∩Bci

p(xn|K = Ki) +
1

M

M∑
i=1

∑
xn∈Ri∩Bi

p(xn|K = Ki)

The first term can be bounded as follows:

1

M

M∑
i=1

∑
xn∈Ri∩Bci

p(xn|K = Ki) ≤
1

M

M∑
i=1

∑
xn∈Ri∩Bci

2n(C+ε)p(xn)

=
2n(C+ε)

M

M∑
i=1

∑
xn∈Ri∩Bci

p(xn)

≤ 2n(C+ε)

M

M∑
i=1

∑
xn∈Ri

p(xn)

≤ 2n(C+ε)

M

M∑
i=1

|B(s,Gi)|∑
t=1

∑
xn∈Sit

p(xn)

≤ 2n(C+ε)

M
|B(s,G)|

≤ 2n(C+ε)−R.
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The second term can be bounded as follows:

1

M

M∑
i=1

∑
xn∈Ri∩Bi

p(xn|K = Ki) ≤
1

M

M∑
i=1

∑
xn∈Bi

p(xn|K = Ki)

=
1

M

M∑
i=1

P

(
log

p(Xn|K = Ki)

p(Xn)
≥ n(C + ε)

∣∣∣∣ K = Ki

)

=
1

M

M∑
i=1

P

 n∑
j=1

log
p(X(j)|K = Ki)

p(X(j))
≥ n(C + ε)

∣∣∣∣ K = Ki

 .

Since X(1), . . . , X(n) are i.i.d. vectors, we have the following equality:

var

 n∑
j=1

log
p(X(j)|K = Ki)

p(X(j))

∣∣∣∣ K = Ki

 = n var

(
log

p(X(1)|K = Ki)

p(X(1))

∣∣∣∣ K = Ki

)
.

where var(·) is the variance of the random variable. Defining

A (K) = max
1≤i≤M

var

(
log

p(X(1)|K = Ki)

p(X(1))

∣∣∣∣ K = Ki

)
,

and using (2) along with Chebyshev’s inequality, we obtain the following bound:

P

 n∑
j=1

log
p(X(j)|K = Ki)

p(X(j))
≥ n(C + ε)

∣∣∣∣ K = Ki

 ≤ A (K)

nε2
, i = 1, 2, . . . ,M.

Choosing ε = (R− nC)/2n and the fact that P
(n)
e = 1− P (n)

c gives us

P (n)
e ≥ 1− 4nA (K)

(R− nC)2
− 2−

(R−nC)
2 .

Proof (Lemma 1). The first inequality follows from the proof of Theorem 1 in [9]. For the second

inequality, note that for graphs G = (V,E(G)) ∈ Gp,d and H = (V,E(H)) ∈ Up with ∆(G,H) < s,

we have |E(G,H)| < s, where E(G,H) is the symmetric difference of the edge sets E(G) and E(H).

In other words, (V,E(G,H)) is a graph on p nodes and at most s− 1 edges. Therefore, B(s,Gp,d)

12



is no more than the number of graphs on p nodes and at most s− 1 edges. This gives

B(s,Gp,d) ≤
s−1∑
i=0

(
p(p− 1)/2

i

)
≤ s
(
p(p− 1)/2

s

)
< s

(
p2/2

s

)
,

where we use the fact that
(
m
i

)
≤
(
m
j

)
for 0 ≤ i ≤ j ≤ m/2 and s ≤ p(p− 1)/4.

Proof (Lemma 2). Since X(1) is a vector of p random variables taking values from {−1, 1}, we have

H(X(1)) ≤ p. Hence, by definition, maxi I(Ki;X
(1)) ≤ H(X(1)) ≤ p.

Proof (Theorem 2). Using Lemmas 1 and 2, we can define bounds R and C in (1) and (2) as follows:

R :=
pd

4
log

p

8d
− log

(
s

(
p2/2

s

))
, (3)

C := p. (4)

Using the fact that
(
a
b

)
≤
(
a·e
b

)b
, we obtain the following lower bound on R

C :

R

C
≥
(
d

4
− 2s

p

)
log p− d

4
log 8d+

s

p
log

2s

e
− log s

p
.

Under the hypothesis of the theorem, we have n < R
2C . Theorem 1 shows that P

(n)
e satisfies

P (n)
e ≥ 1−

8A(KIp,d)
RC

− 2−
R
4 . (5)

We need to now show that the last two terms of the RHS of (5) go to 0 as p→∞. Since d = o(pα)

for some α < 1 and s < (1−α)pd
16 , we have

R = Θ(pd log p). (6)

This shows that the last term of the RHS of (5) goes to 0 as p → ∞. To show the same for the

second last term, we give a bound for A(KIp,d). For this, we recall the definition of A(KIp,d):

A(KIp,d) = max
1≤i≤M

var

(
log

p
(
X(1)

∣∣K = Ki

)
p(X(1))

∣∣∣∣∣K = Ki

)

≤ max
1≤i≤M

E

(log
p
(
X(1)

∣∣K = Ki

)
p(X(1))

)2
∣∣∣∣∣∣K = Ki

 . (7)

To bound A(KIp,d), we give a deterministic bound on log
p(X(1)|K=Ki)

p(X(1))
and use (7). Note that for

13



Ki ∈ KIp,d, the total number of edges in the corresponding graph Gi does not exceed pd
2 . Also, for

every edge (k, l) in Ei, the edge set of Gi, we have |θkl| = θ = O
(

1√
d

)
. Then given Ki ∈ KIp,d and

x ∈ {−1, 1}p, we have the following upper bound:

p (x|K = Ki) =
exp

(∑
(k,l)∈Ei θklxkxl

)
∑

x∈{−1,1}p exp
(∑

(k,l)∈Ei θklxkxl

) ≤ exp
(
θ pd2

)
2p exp

(
−θ pd2

) = exp (p (θd− log 2)) . (8)

Similarly we have the following lower bound :

p (x|K = Ki) =
exp

(∑
(k,l)∈Ei θklxkxl

)
∑

x∈{−1,1}p exp
(∑

(k,l)∈Ei θklxkxl

) ≥ exp
(
−θ pd2

)
2p exp

(
θ pd2

) = exp (−p (θd+ log 2)) . (9)

Since p(x) is the average of p (x|K = Ki), we have the same bounds as above for p(x). Using this

observation as well as bounds (8) and (9) we obtain the following inequality:∣∣∣∣log
p(x|K = Ki)

p(x)

∣∣∣∣ ≤ ∣∣∣∣log
exp (p (θd− log 2))

exp (−p (θd+ log 2))

∣∣∣∣ = 2pθd log e. (10)

Since (10) holds for i = 1, 2, . . . ,M , using (7) and (10) we obtain

A(KIp,d) ≤ 4p2θ2d2 (log e)2 = O(p2d). (11)

where we use the fact that θ = O( 1√
d
). Using (4), (6) and (11) we see that the second term of the

RHS of (5) goes to 0 as p→∞ and hence probability of error goes to 1.

Proof (Lemma 5). The upper bound on B(s,G′p,d) is obtained using arguments similar to those

presented in the proof of Lemma 1. For lower bound on logM , note that there are N(p) = p!
2p/2(p/2)!

possible perfect matchings on a set of p nodes. Therefore, a multigraph composed of d perfect

matchings can be formed in (N(p))d ways. Note that multiple copies of the same multigraph

may be generated during this construction. Using Lemma 3, atleast
(

1− c
pτ

)
(N(p))d of these

multigraphs have (weighted) adjacency matrix A satisfying ρ(A) < 3
√
d, for some constant c > 0.

Note that any given multigraph generated by d perfect matchings is a d-regular graph and has pd
2

edges. In general, each of the edges can come from any of the d perfect matchings. Therefore, a

single multigraph can potentially be generated by atmost d
pd
2 sets of d perfect matchings. Also,

we desire that the multigraphs have different underlying undirected graph structures in Gp,d. The

fact that there can be atmost d edges between two nodes of the multigraph and there are pd
2 edges

overall, gives the lower bound M = |H′| = |KGp,d| = |G′p,d| ≥
(

1− c
pτ

)
1
dpd

(N(p))d. For p > (2c)
1
τ ,
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(
1− c

pτ

)
≥ 1/2. Taking log on both sides and simplifying gives

logM ≥ log

[
1

dpd

(
1− c

pτ

)(
p!

2p/2(p/2)!

)d]
≥ pd

2
log

p

4d2
− 1,

for p > (2c)
1
τ and using the bound p! ≥

(p
2

) p
2
(p
2

)
!.

Proof (Lemma 6). By definition we have I(Ki;X
(1)) = h(X(1))−h(X(1)|K = Ki). The differential

entropy of X(1) is upper bounded by the differential entropy of a Gaussian random vector with the

same covariance matrix. This gives h(X(1)) ≤ 1
2 log(2πe)p|Σ̄|, where Σ̄ = 1

M

∑M
i=1 Σi and Σi = Θ−1i

is the covariance matrix associated with Ki. Also, h(X(1)|K = Ki) = 1
2 log(2πe)p|Σi|. This gives

I(Ki;X
(1)) ≤ 1

2
(log |Σ̄| − log |Σi|) =

1

2
(log |Σ̄|+ log |Θi|)

By construction, the diagonal entries of every inverse covariance matrix Θi are same and equal

to 4
√
dµ + δ. So by Hadamard’s Inequality, |Θi| ≤ (4

√
dµ + δ)p. Also, as stated in the proof of

Lemma 4, the minimum eigenvalue of Θi is atleast δ. This means that the maximum eigenvalue

of Σi is atmost 1
δ or ||Σi||2 ≤ 1

δ . Hence, the maximum eigenvalue of Σ̄ does not exceed 1
δ as

||Σ̄||2 ≤ 1
M

∑M
i=1 ||Σi||2. This gives |Σ̄| ≤ ||Σ̄||p2 ≤ 1

δp . Therefore, we obtain

I(Ki;X
(1)) ≤ p

2
log

(
1 +

4
√
dµ

δ

)
=
p

2
log

(
1 +

4
√
d

λ−1 − 4
√
d

)

where we substitute µ = δ
λ−1−4

√
d
.

Proof (Theorem 3). Following the lines of the proof of Theorem 2, we define the bounds R and C

satisfying (1) and (2), as per Lemmas 5 and 6:

R :=
pd

2
log

p

4d2
− log

[
s

(
p2/2

s

)]
− 1, (12)

C :=
p

2
log

(
1 +

4
√
d

λ−1 − 4
√
d

)
. (13)

After some algebraic manipulations, we obtain the following lower bound on R
C :

R

C
≥

(
d− 4s

p

)
log p− 2d log 2d+ 2s

p log 2s
e −

2 log s
p − 2

p

log
(

1 + 4
√
d

λ−1−4
√
d

) .
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Under the hypothesis of the theorem, we have n < R
2C . Theorem 1 shows that P

(n)
e satisfies

P (n)
e ≥ 1−

8A(KGp,d)
RC

− 2−
R
4 . (14)

Even in this case, the last term in the RHS of (14) goes to 0 as p → ∞, as d = o(pα) for some

α < 1
2 and s < (1−2α)pd

8 implies

R = Θ(pd log p). (15)

To show that the second last term in RHS of (14) goes to 0 as p→∞, we give a bound for A(KGp,d).

For this, we first derive a deterministic bound on log
p(X(1)|K=Ki)

p(X(1))
. We define Dmax = maxi |Θi|,

Dmin = mini |Θi|, λmax to be the maximum among the eigenvalues of Θi, i = 1, 2, . . . ,M , and

Θ̄ = 1
M

∑M
i=1 Θi. Then given Ki ∈ KGp,d and x ∈ Rp, we have the following upper bound:

p(x|K = Ki)

p(x)
=

√
|Θi| exp(−1

2x
TΘix)

1
M

∑M
j=1

√
|Θj | exp(−1

2x
TΘjx)

≤
√
Dmax√
Dmin

1
1
M

∑M
j=1 exp(−1

2x
TΘjx)

≤
√
Dmax√
Dmin

exp

(
1

2
xT Θ̄x

)
≤
√
Dmax√
Dmin

exp

(
λmax

2
xTx

)
.

This gives

log
p(x|K = Ki)

p(x)
≤ 1

2
log

Dmax

Dmin
+
λmax

2
xTx. (16)

Similarly, we have the following lower bound:

p(x|K = Ki)

p(x)
=

√
|Θi| exp(−1

2x
TΘix)

1
M

∑M
j=1

√
|Θj | exp(−1

2x
TΘjx)

≥
√
Dmin√
Dmax

exp

(
−1

2
xTΘix

)
≥
√
Dmin√
Dmax

exp

(
−λmax

2
xTx

)
.

This gives

log
p(x|K = Ki)

p(x)
≥ −1

2
log

Dmax

Dmin
− λmax

2
xTx. (17)
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Inequalities (16) and (17) together give∣∣∣∣log
p(X|K = Ki)

p(X)

∣∣∣∣ ≤ 1

2
log

Dmax

Dmin
+
λmax

2
XTX.

Therefore, we have

var

(
log

p(X|K = Ki)

p(X)

∣∣∣∣ K = Ki

)
≤ E

[(
1

2
log

Dmax

Dmin
+
λmax

2
XTX

)2 ∣∣∣∣ K = Ki

]

≤ 1

2

(
log

Dmax

Dmin

)2

+
λ2max

2
E[(XTX)2|K = Ki].

For the given ensemble, we have Dmax ≤ (4
√
dµ+δ)p, Dmin ≥ δp, λmax = (d+4

√
d)µ+δ ≤ 5dµ+δ,

where µ = δ/(λ−1 − 4
√
d). Using these bounds, we get

var

(
log

p(X|K = Ki)

p(X)

∣∣∣∣ K = Ki

)
≤ p2

2

(
log

(
1 +

4
√
d

λ−1 − 4
√
d

))2

+
δ2

2

(
1 +

5d

λ−1 − 4
√
d

)2

E[(XTX)2|K = Ki].

We also have

E[(XTX)2|K = Ki] = (Tr(Θ−1i ))2 + Tr(2Θ−2i ) ≤ p2 + 2p

δ2
≤ 2p2

δ2
.

Then we get

var

(
log

p(X|K = Ki)

p(X)

∣∣∣∣ K = Ki

)
≤ p2

2

(log

(
1 +

4
√
d

λ−1 − 4
√
d

))2

+ 2

(
1 +

5d

λ−1 − 4
√
d

)2


≤ 3p2

2

(
1 +

5d

λ−1 − 4
√
d

)2

.

Thus, we get the result:

A(KGp,d) ≤
3p2

2

(
1 +

5d

λ−1 − 4
√
d

)2

. (18)

For λ = O
(

1/
√
d
)

, we obtain A = O(p2d). Using (13), (15) and (18), we see that the second term

of the RHS of (14) goes to 0 as p→∞ and hence probability of error goes to 1.
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