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Semi-definite programs (SDPs)

• Several applications
• Clustering (max-cut)

• Control

• Sum-of-squares

• …

• Polynomial time solutions exist but can be slow
• Interior-point methods

• Multiplicative weight update

min
𝑋∈𝑅𝑛×𝑛

⟨𝐶, 𝑋⟩
𝑠. 𝑡. 𝐴𝑖 , 𝑋 = 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑚

𝑋 ≽ 0

Burer-Monteiro 2003
• Much faster
• Empirically works well
• No proof of correctness



Low rank solutions always exist!

• (Barvinok’95, Pataki’98): For any feasible SDP, at least one solution exists 
with rank 𝑘∗ ≤ 2𝑚

• In several applications 𝑚 ∼ 𝑛. So 𝑘∗ ≪ 𝑛.

Burer-Monteiro: Optimize in low rank space; iterations are fast!



Burer-Monteiro factorization

min
𝑈∈𝑅𝑛×𝑘

⟨𝐶, 𝑈𝑈𝑇⟩

𝑠. 𝑡. 𝐴𝑖 , 𝑈𝑈
𝑇 = 𝑏𝑖

min
𝑋∈𝑅𝑛×𝑛

⟨𝐶, 𝑋⟩

𝑠. 𝑡. 𝐴𝑖 , 𝑋 = 𝑏𝑖; 𝑖 = 1,⋯ ,𝑚
𝑋 ≽ 0

𝑘 ∼ 𝑚

𝑛2 dimensional problem 𝑛𝑘 dimensional problem



Burer-Monteiro factorization

min
𝑈∈𝑅𝑛×𝑘

⟨𝐶, 𝑈𝑈𝑇⟩

𝑠. 𝑡. 𝐴𝑖 , 𝑈𝑈
𝑇 = 𝑏𝑖

min
𝑈∈𝑅𝑛×𝑘

𝑓 𝑈 = 𝐶, 𝑈𝑈𝑇 + 𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
𝑇 − 𝑏𝑖

2

Penalty 
Version

min
𝑋∈𝑅𝑛×𝑛

⟨𝐶, 𝑋⟩

𝑠. 𝑡. 𝐴𝑖 , 𝑋 = 𝑏𝑖; 𝑖 = 1,⋯ ,𝑚
𝑋 ≽ 0

Nonconvex problem!

Penalty 
parameter

𝑘 ∼ 𝑚



What can be done for nonconvex problems?

• First order stationary points (FOSP)

∇𝑓 𝑥 ≤ 𝜖

• Second order stationary points (SOSP)

∇𝑓 𝑥 ≤ 𝜖 and ∇2𝑓 𝑥 ≥ −𝜖𝕀

• Lot of recent work on how to find SOSPs efficiently



Low rank SDP

Boumal et al. 2016: if 𝑘 ≥ 2𝑚, for almost all 𝐶, SOSP = global optimum

Open questions

• Are there 𝐶 for which SOSP ≠ global optimum?

• Are approximate SOSP = approximate global optima?

Our results

• Yes, there are 𝐶 for which SOSP ≠ global optimum

• Yes, for perturbed SDPs, 

approximate SOSP = approximate global optima

min
𝑈∈𝑅𝑛×𝑘

𝑓 𝑈 = 𝐶,𝑈𝑈𝑇 + 𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
𝑇 − 𝑏𝑖

2



Smoothed analysis

• 𝐺: symmetric Gaussian matrix with 𝐺𝑖𝑗 ∼ 𝑁(0, 𝜎𝐺
2)

• 𝜎𝐺 ≈ Ω(𝜖)

• If 𝑘 = Ω( 𝑚 log 1/𝜖) then with high probability

every 𝜖 SOSP = 𝜖 global optimum

min
𝑈∈𝑅𝑛×𝑘

𝑓 𝑈 = 𝐶,𝑈𝑈𝑇 + 𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
𝑇 − 𝑏𝑖

2

min
𝑈∈𝑅𝑛×𝑘

𝑓 𝑈 = 𝐶 + 𝐺,𝑈𝑈𝑇 + 𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
𝑇 − 𝑏𝑖

2



Main Ideas of the Proof



Two key steps

1. SOSP that is rank deficient is global optimum [Burer-Monteiro 2003]

𝑈 SOSP and 𝜎𝑘 𝑈 = 0 ⇒ 𝑈 is a global optimum

2. For perturbed SDPs, with probability 1, if 𝑘 ≥ 2𝑚, then

all FOSPs have 𝜎𝑘 𝑈 = 0. [Boumal et al. 2016]

𝑘th largest singular value of 𝑈



Two key steps

1.

𝑈 SOSP and 𝜎𝑘 𝑈 small ⇒ 𝑈 is a global optimum

2. For perturbed SDPs, with probability 1, if 𝑘 ≥ 2𝑚, then

all FOSPs have small 𝜎𝑘 𝑈 . 

min
𝑈∈ℝ𝑛×𝑘

𝑓 𝑈𝑈⊤
𝑓(⋅) convex

approximate approximate

approximate

high probability 𝑘 ≥ 𝑚 log 1/𝜖



FOSP ⇒ 𝜎𝑘 𝑈 is small
min

𝑈∈𝑅𝑛×𝑘
𝑓 𝑈 = 𝐶 + 𝐺, 𝑈𝑈𝑇 + 𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
𝑇 − 𝑏𝑖

2

• Approximate FOSP: 𝐶 + 𝐺 + 2𝜇 σ𝑖 𝐴𝑖 , 𝑈𝑈
⊤ − 𝑏𝑖 𝐴𝑖 𝑈 ≤ 𝜖

𝐶 + 𝐺 + 2𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
⊤ − 𝑏𝑖 𝐴𝑖 𝑈

≤ 𝜖𝑛

𝑘



Aside: Lower bound on product of matrices
𝐻 𝑈

≥ 𝜎𝑛−𝑘+1 𝐻 ⋅ 𝜎𝑘 𝑈𝑛

𝑘

𝜎𝑘 𝑈 ≤
𝐻𝑈

𝜎𝑛−𝑘+1(𝐻)



FOSP ⇒ 𝜎𝑘 𝑈 is small

𝜎𝑛−𝑘+1 𝐶 + 𝐺 + 2𝜇 σ𝑖 𝐴𝑖 , 𝑈𝑈
⊤ − 𝑏𝑖 𝐴𝑖 large

𝜎𝑘 𝑈 is small

𝐶 + 𝐺 + 2𝜇෍

𝑖

𝐴𝑖 , 𝑈𝑈
⊤ − 𝑏𝑖 𝐴𝑖 𝑈

≤ 𝜖𝑛

𝑘



Smallest singular values of Gaussian matrices

• 𝜎𝑖 𝐺 denotes the 𝑖th singular value of 𝐺.

ℙ 𝜎𝑛 𝐺 = 0 = 0

• In general, 𝜎𝑛−𝑘 𝐺 ∼
𝑘

𝑛
.

• Can obtain large deviation bounds [Nguyen 2017]

ℙ 𝜎𝑛−𝑘 𝐺 < 𝑐
𝑘

𝑛
< exp −𝐶𝑘2 + 𝑘 log 𝑛

• Can extend the above to 𝐺 + 𝐴 for any fixed matrix 𝐴



Coming back to SDPs

• Interested in bounding

𝜎𝑛−𝑘 𝐺 + 𝐶 + 2𝜇෍

𝑖=1

𝑚

𝐴𝑖 , 𝑈𝑈
⊤ − 𝑏𝑖 𝐴𝑖

• Do an 𝜖-net of 𝜆1, ⋯ , 𝜆𝑚 ∈ ℝ𝑚 and apply large deviation bound for

ℙ 𝜎𝑛−𝑘 𝐺 + 𝐶 +෍

𝑖=1

𝑚

𝜆𝑖𝐴𝑖 < 𝑐
𝑘

𝑛
< exp −𝐶𝑘2 + 𝑘 log 𝑛

• Taking union bound over 𝜖-net gives additional 
1

𝜖

𝑚
factor

Unknown quantity

Need 𝑘2 ≥ 𝑚 log 1/𝜖



Technical issues

• Can do 𝜖-net only over a finite size ball

• Need to show 𝐴𝑖 , 𝑈𝑈
⊤ − 𝑏𝑖 does not become unbounded at SOSPs

• Requires us to show that all SOSPs are uniformly bounded

• Can show this for compact SDPs i.e., feasible set is compact

• Not obvious – SOSPs in nonconvex world may be infeasible



Approx low rank SOSP ⇒ approx. global opt

• 𝑓(⋅) convex: 𝑈𝑈⊤ suboptimal ⇒ there exists descent direction

• In fact, ∃ descent direction increasing the rank by at most 1

• If 𝑈 was rank deficient, this direction exists in factorized space

• Since 𝑈 is approx. rank deficient, can construct a direction that does 
not increase the rank



Summary

• Low rank solutions to SDPs useful from both application and 
algorithmic perspectives

• Burer-Monteiro approach tries to leverage this idea

• May not work in the worst case

• This work: Burer-Monteiro works in the smoothed analysis sense



Open directions

• We believe the results are not tight

• Extension of these results to augmented Lagrangian methods (ALM)
• The one actually used in practice

• Significantly better than penalty methods

• Preliminary results on exact-ALMs but no results for inexact ALMs

• Obtain solutions of rank ≪ 𝑚 for special problems



Open directions – random matrix theory

• Main bottleneck in our results – 𝜖-net argument

• Distance of a random matrix from a subspace Well understood!

• Distance of a random matrix from low rank matrices Well understood!

• Distance of a random matrix from a subspace + low rank matrices

Not understood!

• Leads to interesting Mathematical questions + applications (in SDPs)



Thank you!

Questions?


