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Semi-definite programs (SDPs)

S.t. (AL,X>=bl,1SlSm

o, (6X) X >0
* Several applications Burer-Monteiro 2003
e Clustering (max-cut) e Much faster
* Control * Empirically works well

e Sum-of-squares

* No proof of correctness

* Polynomial time solutions exist but can be slow
* Interior-point methods
 Multiplicative weight update



Low rank solutions always exist!

 (Barvinok’95, Pataki’98): For any feasible SDP, at least one solution exists
with rank k™ <+V2m

* In several applications m ~ n.So k™ < n.

Burer-Monteiro: Optimize in low rank space; iterations are fast!



Burer-Monteiro factorization

min (C,X) min (C,UUT)
XERNXN . ‘ UeRNXk
s.t. (A;,X)=0b;;i=1,---,m s.t. (A;, UUT) = b
X=0

k ~+m

n? dimensional problem nk dimensional problem



Burer-Monteiro factorization

min (C, X) min (C,UUT)
XeRTlXTl ' ‘ UeRTLXk
s.t. (ApX)=b;i=1,,m s.t. (A, UUT) = b;
X=0

k ~+m

Sl Penalty

Version

parameter

UeRMX

min f(U) = (C,UUT)+ /,LZ((Ai, UuuT) — bi)2

Nonconvex problem!



What can be done for nonconvex problems?

* First order stationary points (FOSP)
IVF()ll <€
* Second order stationary points (SOSP)

IVF(x)|] < eand V4f(x) = —el

* Lot of recent work on how to find SOSPs efficiently



Low rank SDP ,min, @) = (C.UU")+k ) ({4,007 = b))’

Boumal et al. 2016: if kK = v/ 2m, for almost all C, SOSP = global optimum

Open questions
* Are there C for which SOSP # global optimum?
* Are approximate SOSP = approximate global optima?

Our results
* Yes, there are C for which SOSP +# global optimum

* Yes, for perturbed SDPs,
approximate SOSP = approximate global optima




min f(U) = (C,UUT)+uZ((Ai, UUT)—bi)2

UeRnXk

Smoothed analysis

UeR™*k

min f(U) = (C+G,UUT)+ uz((Ai, uuT) - bz)z

* G: symmetric Gaussian matrix with G;; ~ N (O, of)
* g; = (Q(€)

o Ifk = Q(\/m log 1/€) then with high probability

every € SOSP = € global optimum



Main Ideas of the Proof



Two key steps

1. SOSP that is rank deficient is global optimum [Burer-Monteiro 2003]

U SOSP and 0, (U) = 0 = U is a global optimum
L—kth |argest singular value of U

2. For perturbed SDPs, with probability 1, if k = +/2m, then

all FOSPs have o3, (U) = 0. [Boumal et al. 2016]



Two key steps 0, f(WUD)  £() convex

approximate approximate
U,SOSP and 03, (U) small = U is a global optimum

high probability k = Eémlog 1/€
2. For perturbed SDPs, with prebabitity-1, if k== , then

approximate
all FOSPs have small o, (U).




FOSP = a3, (U) is small
min f(U) = (C+G,UUT>+MZ(<Ai:UUT>_bi)2

UeRnxk

* Approximate FOSP: H(C + G+ 2u Zi((Ai, UUT) — bi) Ai)UH <€

C+G+2MZ((Ai;UUT>_bi)Ai U
i

A

IN
m




Aside: Lower bound on product of matrices

H

\4

U

> Op_+1(H) - o, (U)

4T>

.

O'k(U) <

|HU||

O-n—k+1(H)
J




FOSP = a3, (U) is small

O'n_k+1(C + G+ 2u Zi((Ai, UUT> — bl-) Ai) large

A

0y, (U) is small

C+G+2u Z((Ai, UUT) — b;) A; U
[

A

IN
m




Smallest singular values of Gaussian matrices

* 0;(G) denotes the i*" singular value of G.
P[Un(G) — O] =0

* In general, g,,_; (G) ~ %

e Can obtain large deviation bounds [Nguyen 2017]

k
P [O’n_k(G) < c—| < exp(—Ck? + klogn)

Vn

e Can extend the above to G + A for any fixed matrix A




Need k% > mlog1/e
Coming back to SDPs

Unknown quantity

* Interested in bounding |

m | |
| G+ C+ zuZ((Ai, UUT) — b;)A;
=1

* Do an e-net of (14, +*+,4,,;) € R™ and apply large deviation bound for

m
k
Plo,—x| G+ C +Z/1iAi < c\/—_ < exp(—Ck2 + klogn)
n
i=1

1
€

m
* Taking union bound over e-net gives additional ( ) factor



Technical issues

* Can do e-net only over a finite size ball

* Need to show (Al-, UUT) — b; does not become unbounded at SOSPs
e Requires us to show that all SOSPs are uniformly bounded

e Can show this for compact SDPs i.e., feasible set is compact

* Not obvious — SOSPs in nonconvex world may be infeasible



Approx low rank SOSP = approx. global opt

* () convex: UUT suboptimal = there exists descent direction
* In fact, 3 descent direction increasing the rank by at most 1
* If U was rank deficient, this direction exists in factorized space

 Since U is approx. rank deficient, can construct a direction that does
not increase the rank



Ssummary

* Low rank solutions to SDPs useful from both application and
algorithmic perspectives

* Burer-Monteiro approach tries to leverage this idea
* May not work in the worst case

* This work: Burer-Monteiro works in the smoothed analysis sense



Open directions

* We believe the results are not tight

* Extension of these results to augmented Lagrangian methods (ALM)

* The one actually used in practice
 Significantly better than penalty methods

* Preliminary results on exact-ALMs but no results for inexact ALMs

* Obtain solutions of rank < +/m for special problems



Open directions — random matrix theory

* Main bottleneck in our results — e-net argument

e Distance of a random matrix from a subspace Well understood!
 Distance of a random matrix from low rank matrices Well understood!
* Distance of a random matrix from a subspace + low rank matrices

Not understood!
 Leads to interesting Mathematical questions + applications (in SDPs)



Thank you!

Questions?



