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Abstract—We consider the problem of learning the underlying
graph structure of discrete Markov networks based on power-law
graphs, generated using the configuration model. We translate the
learning problem into an equivalent channel coding problem and
obtain necessary conditions for solvability in terms of problem
parameters. In particular, we relate the exponent of the power-
law graph to the hardness of the learning problem, and show
that more number of samples are required for exact recovery of
discrete power-law Markov graphs with small exponent values.
We develop an efficient learning algorithm for accurate recon-
struction of graph structure of Ising model on power-law graphs.
Finally, we show that order-wise optimal number of samples
suffice for recovering the exact graph under certain constraints
on Ising model parameters and scalings of node degrees.

Index Terms—Markov network, power-law graph, Ising model

I. INTRODUCTION

Markov networks, also known as graphical models, provide
a powerful framework for succinctly encoding probability
distributions in form of undirected graphs – random variables
get mapped to nodes of the undirected graph, while the
interdependencies among them get mapped to its edges. As
such, Markov networks are widely used for modeling and
designing applications in a multitude of settings like social
networks [1], [2], image processing [3], [4], and computational
biology [5], [6]. With the increasing use of this framework
in complex and non-conventional domains, the problem of
selecting the most suitable Markov network from among the
large space of possible network structures has gained consid-
erable importance. Thus, the domain of successful recovery of
Markov graphs using observed samples generated from their
probability distributions, also known as the graphical model
selection problem, is an active area of study and research.

An interesting approach for tackling the learning problem is
to interpret it as an equivalent noisy channel coding problem
[7], and utilize achievability and converse techniques to derive
the necessary and sufficient conditions related to recovery.
While achievability can be associated with designing learning
algorithms that can accurately estimate the graph structure
and parameters of Markov networks from observed samples,
converse characterizes the information-theoretic limits of the
learning problem, i.e., necessary conditions on the nature and
number of samples that individuate the Markov networks.

Power-law graphs are relatively common across a variety of
domains. A power-law graph is one whose degree sequence
exhibits a power-law or Pareto probability distribution. The
standard property of a power-law graph is as follows – given
α > 1, the number of nodes with degree k in a power-law

graph having exponent α is approximately proportional to
k−α. Examples of instances where power-law behavior has
been observed include social networks [8], protein complex
networks [9], gene networks [10] and portions of the internet
[11]. Thus, many Markov networks derived from natural or
practical setups are typically based on power-law graphs.

In this paper, we consider the problem of learning the
underlying graph structure of discrete Markov networks based
on power-law graphs. We explore the connection between the
power-law exponent and sample complexity of the learning
problem, examining it both from achievability and converse
perspectives. Understanding the picture concerning sample
complexity is critical when designing algorithms for Markov
graph recovery, for example, when the minimum node degree
scales like a constant, while the maximum node degree scales
with the number of nodes [12]. We consider the family of
power-law graphs generated using the configuration model
[13], and use structural properties of these power-law graphs
for designing a learning algorithm ensuring accurate graph
recovery for the Ising model (assuming certain constraints
are satisfied). Thus, we investigate the relationship between
the hardness of learning Markov graphs and their structural
properties, providing some partial answers in this regard.

Related Work: There is a significant body of literature
related to analysis of the graphical model selection problem,
especially for specialized families of Markov networks such
as Ising model [14]–[18] and Gaussian model [19]–[21], with
their underlying graphs selected from ensembles of degree-
bounded graphs [14]–[16], [19], [21], large-girth graphs [17],
and sparse random graphs like Erdös-Rényi and small-world
graphs [16], [21]. As far as the converse aspect is concerned,
strong lower bounds on the probability of error of learning
algorithms are derived in [16] and [22] for exact recovery
of structure of Ising model based on Erdös-Rényi graphs, and
Gaussian model based on degree-bounded graphs respectively.
Likewise, lower bounds on number of observed samples
are obtained in [12], for ensuring accurate reconstruction of
discrete Markov networks based on two ensembles of power-
law graphs, namely the configuration model and Chung-Lu
model [23], with exponent exceeding 3 for both of them.

Learning algorithms (for achievability aspect) can broadly
be classified into three categories – search-based, optimization-
based, and greedy techniques. Search-based algorithms find
the smallest set of nodes through exhaustive search, con-
ditioned on which a node is independent of others [14],
[16], [21]. Optimization-based algorithms frame the learning
problem as a convex optimization problem, but require a strong



incoherence assumption to ensure exact recovery [20]. The
algorithms that use greedy methods, discover the neighbor-
hoods of nodes by minimizing some function of the random
variables, like conditional entropy, in a greedy fashion [17],
[18]. [12] examines the performance of these algorithms for
learning power-law Markov graphs and observes that sample
complexity scales poorly with the number of nodes if the
variation in degrees of nodes is large; it also states that the task
of designing efficient and near-optimal learning algorithms for
such Markov networks is an outstanding open problem.

Main Results: We examine the impact of power-law expo-
nent on the information-theoretic limits of sample complexity,
and use converse arguments to show that learning algorithms
require greater number of samples (in order-wise sense) for
exact recovery of Markov graphs having small exponent
values. Moreover, a sharp transition in the sample complexity
requirement is observed at exponent value of 2. A major
issue faced while designing algorithms for power-law Markov
networks is the absence of reasonable guarantees on number
of samples required for exact recovery [12]; for example,
if the degrees of multiple nodes scale with the number of
nodes. We design a learning algorithm, motivated by the one in
[21], and show that the graph structure of ferromagnetic Ising
model based on power-law graphs with p random variables
and exponent greater than 3 can be accurately learnt using
Ω(log2 p) samples, that is order-wise optimal if the minimum
degree scales like a constant. In case the exponent lies between
2 and 3, we obtain a sample complexity requirement that is
poly-log in the number of nodes (Ω((log2 p)

3) samples, to be
precise), under certain constraints on scalings of degrees.

Due to limitation of space, we omit the proofs of results
presented in this paper. The audience can refer to [24] for a
more detailed version of the paper, along with the proofs.

II. PRELIMINARIES

We consider an undirected graph G = (V,E), where V =
{1, . . . , p} is the set of nodes and E is the set of edges. A
Markov network is obtained by associating a random variable
Xi to i ∈ V , that takes values from some alphabet set A,
and specifying a joint probability distribution f(·) over vector
X = (X1, X2, . . . , Xp) that possesses the following property:

f(xA, xB |xC) = f(xA|xC)f(xB |xC),

where A,B,C are any disjoint subsets of V such that every
path between a node in A and a node in B passes through at
least one node in C, and xA, xB , xC denote the restrictions
of (x1, . . . , xp) ∈ Ap to indices in A,B,C respectively. Note
that f(·) denotes the probability mass function (p.m.f.) for the
case of discrete Markov networks (i.e., A is a finite set).

Ising Model: This is a well-known family of discrete
Markov networks, studied in diverse fields like statistical
physics, computer vision and game theory. An Ising model,
with G as its underlying graph, is obtained by setting A =
{−1, 1}, assigning node potentials hi ∈ R to i ∈ V and edge

potentials θij ∈ R to (i, j) ∈ E. Then the p.m.f. of X satisfies

f(x) ∝ exp

∑
i∈V

hixi +
∑

(i,j)∈E

θijxixj

 .

A special case of the Ising model is the ferromagnetic Ising
model, where θij > 0 for all (i, j) ∈ E. Note that the
normalization constant associated with the p.m.f. is affected
by the graph topology and values of node/edge potentials.

A. Learning Algorithm and Error Criterion

We denote the set of undirected graphs on p nodes by Up.
We consider a family of discrete Markov networks, comprising
of p random variables that take values from A, and an
ensemble of undirected graphs G ⊆ Up. We choose G ∈ G
uniformly at random, select a Markov network, with G as its
underlying graph, from the family, and obtain n i.i.d. vector
samples xn = (x(1), . . . , x(n)) from this distribution. The
problem of learning Markov graphs is to reconstruct G from
xn. A learning algorithm is any mapping φ : Anp → Up
that enables us to generate a graph estimate Ĝ = φ(xn). We
define the error event as {Ĝ 6= G} (i.e., we focus on exact
graph recovery); thus, the probability of error of φ is given by

P (n)
e (φ) = P (Ĝ 6= G) = P (φ(xn) 6= G).

The converse aspect of the learning problem is concerned with
obtaining a strong lower bound on P

(n)
e (φ) in terms of n

and graph ensemble parameters for any φ. On the other hand,
the achievability aspect of the learning algorithm is concerned
with designing φ having the property that P (n)

e (φ) becomes
arbitrarily small as the problem and sample sizes increase.

III. CONFIGURATION MODEL

We consider a degree sequence d = (d1, d2, . . . , dp) for
an undirected graph on p nodes, and a set of configuration
points W = {1, 2, . . . , 2m}, where 2m =

∑n
i=1 di. We define

Wk =
{∑k−1

i=1 di + 1,
∑k−1
i=1 di + 2 . . . ,

∑k
i=1 di

}
, for k =

1, 2, . . . , p (we set d0 = 1). Thus, {Wk : 1 ≤ k ≤ p} forms
a partition of W with |Wk| = dk. Next, we define a mapping
ψ : W → {1, 2, . . . , p} such that ψ(x) = k for x ∈Wk. Then,
given a (perfect) matching F for W (i.e., a partition of W
into m pairs {x, y}), one can obtain a multi-graph G(F) =
(V,E) with V = {1, 2, . . . , p} and (ψ(x), ψ(y)) ∈ E for
each {x, y} ∈ F . Therefore, choosing a matching F for W
uniformly at random results in the generation of a multi-graph
G(F), where i ∈ V has degree di. We refer to this as the
configuration model and designate the ensemble by G(d).

The number of distinct matchings F of the 2m points in W
is given by N2m = (2m)!

m!2m . We call a multi-graph simple if it has
no self-loops or multiple edges between nodes. An interesting
point to note is that the number of matchings corresponding
to each simple graph in G(d) is the same, i.e., simple graphs
are equiprobable in the space of multi-graphs. We refer to
the subset of simple graphs as Gs(d) ⊂ G(d). We define
dmin = mini∈V di, dmax = maxi∈V di, and assume that



dmax = o(p
1
3 ), dmin = o(dmax) – under these scalings, it is

known that the probability of G(F) being simple for uniformly
chosen F approaches qs = exp(−ν2 −

ν2

4 ) as p→∞, where
ν =

∑
i d

2
i∑

i di
− 1 [25]. Using this fact gives the following result:

Lemma III.1. Given d and large enough values of p, we have

|Gs(d)| ≥ qs
2

N2m∏
i∈V di!

≥ qs
2

∏
i∈V

(
m

1
2

2di

)di
.

A. Generating Power-Law Graphs
Given α > 1, a power-law graph with exponent α has the

property that the number of nodes with degree k is propor-
tional to k−α. For p nodes and given values of dmin, dmax,
we define ζ(α) = (

∑dmax

k=dmin
k−α)−1. Then the number of

nodes with degree k approximately equals pζ(α)k−α, where
dmin ≤ k ≤ dmax. For the sake of simplicity, we assume
that pζ(α)k−α, dmin ≤ k ≤ dmax, are integers. Note that
this imposes the constraint dmax ≤ (pζ(α))

1
α , since there is

at least one node with degree dmax. Therefore, we assume
dmax = o(pmin( 1

3 ,
1
α )), and define the degree sequence d as

dj = l, pζ(α)

(
l−1∑
k=dmin

k−α

)
< j ≤ pζ(α)

(
l∑

k=dmin

k−α

)
,

for dmin ≤ l ≤ dmax. We denote the resulting ensemble of
power-law graphs by Gα, and its subset of simple graphs by
Gs,α. We also define the following quantities, dependent on d:

d̄ =

{
(α−1)
(2−α)d

2−α
maxd

α−1
min , 1 < α < 2,

(α−1)
(α−2)dmin , α > 2,

d̃ =


(2−α)
(3−α)dmax , 1 < α < 2,
(α−2)
(3−α)d

3−α
maxd

α−2
min , 2 < α < 3,

(α−2)
(α−3)dmin , α > 3.

One can check that d̄ is within a constant factor of average
degree of the power-law graph (i.e.,

∑
i di
p ), and d̃ is within

a constant factor of the ratio of average squared degree to
average degree (i.e.,

∑
i d

2
i∑

i di
). We have the following lemma:

Lemma III.2. Given α > 1 and large enough values of p,
there exists a positive constant c0 s.t. for dmin ≥ c0, we have

log2 |Gs,α| ≥
pd̄

9
log2

(
(α− 1)

|α− 2|
p

)
.

Note that we inherently assume that dmin is larger than some
suitable constant and p is chosen sufficiently large in all the
subsequent results concerning the graphs in Gα and Gs,α.

Next, we state a structural property of power-law graphs in
Gs,α with α > 2, that facilitates the process of learning discrete
Markov networks based on them. For this, we make some
additional stronger assumptions on the scalings of dmin, dmax:

(A1) dmin = Θ(1), dmax = o((log2 p)
1

2(3−α) ), 2 < α < 3,
(A2) dmin = Θ(1), dmax = o(pmin( 1

8 ,
1
α )), α > 3.

These restrictions on scalings ensure that ν = o((log2 p)
1
2 );

therefore, the probability of getting a simple graph scales as

exp(−o(log2 p)). This implies that as long as some structural
property is satisfied for a uniformly generated graph from Gα
with probability ≥ 1 − p−Θ(1), it also holds for a uniformly
selected graph from Gs,α with probability ≥ 1− p−Θ(1).

Given an integer r, we define the r-neighborhood of a node
in a graph as the subgraph comprising of nodes that are reach-
able from it via at most r edges. We define r0 = 1

3
log2 p

log2(80d̃)
and assume it is an integer. Then the following result holds:

Lemma III.3. Given α > 2 and assumptions (A1), (A2) hold,
if a graph is selected uniformly at random from Gs,α, at most
one cycle exists in the r0-neighborhood of any node (i.e., the
graph is locally tree-like) with probability ≥ 1− p−Θ(1).

In other words, there are a few paths of length ≤ r0 between
any two nodes in a graph of Gs,α with high probability. This
implies that for discrete Markov networks based on graphs
in Gs,α, any two random variables are near-independent,
conditioned on a small number of random variables. This
motivates the design of search-based learning algorithm for
recovering the graph structure of these Markov networks.

IV. LEARNING ALGORITHM: ANALYSIS AND DESIGN

The description of the setup for analysis in Section II-A
enables the interpretation of graphical model selection problem
as a channel coding problem, where the Markov graph, set of
observed samples and learning algorithm can be treated as
the transmitted message, received signal and message decoder
respectively. This enables the application of converse and
achievability techniques for a better understanding of limita-
tions and performance of the learning problem framework.

A. Lower Bounds on Sample Complexity (Converse)

First, we examine the converse aspect and derive lower
bounds on number of samples required for any algorithm
to accurately learn the graph structure of a discrete Markov
network with its graph in Gs,α. To be precise, we obtain a
threshold value such that if the number of samples, n, is
less than the threshold value, the probability of error of any
learning algorithm is bounded away from zero. For this, we
select G = Gs,α and consider any family of discrete Markov
networks with graphs in Gs,α. Then the following result holds:

Theorem IV.1. Given any learning algorithm φ, if we have

n <
d̄

10 log2 |A|
log2

(
(α− 1)

|α− 2|
p

)
,

then its probability of error satisfies limp→∞ P
(n)
e (φ) = 1.

Thus, Theorem IV.1 indicates a sample complexity require-
ment of n = Ω(d2−α

maxd
α−1
min log2 p) for 1 < α < 2, and

n = Ω(dmin log2 p) for α > 2, to ensure exact recovery of
the Markov graph. Note that the sample complexity result for
α > 3 matches the one derived in [12] in order-wise sense,
where a slightly modified version of configuration model is
used and dmin is set as 1. If dmax scales with p, Theorem
IV.1 implies that a learning algorithm needs more number of
samples (in order-wise sense) to reconstruct the underlying



graph of a discrete Markov graph when α is less than 2, as
compared to when it is greater than 2. Also, there is a sharp
transition in sample complexity requirement observed at α = 2
– a potential reason for this phenomenon is that the fraction of
high degree nodes decreases as α increases. In other words, it
is inherently difficult to learn (in terms of sample complexity)
power-law graph-based discrete Markov networks with lower
exponents (less than 2, to be precise); moreover, this issue
aggravates as the exponent decreases in value from 2 to 1.

B. Learning Algorithm for Ising Model (Achievability)

Next, we examine the achievability aspect of the learning
problem and design an algorithm for learning the graph struc-
ture of Ising model based on graphs in Gs,α. In particular, we
focus on the ferromagnetic Ising model family with bounded
node potentials. As observed in Section IV-A, the sample
complexity requirement for exact recovery tends to be large
if the exponent is less than 2, since then the average degree
depends on the maximum degree, that may scale with number
of nodes. Therefore, we restrict ourselves to the regime α > 2,
and also allow assumptions (A1), (A2) to hold. As pointed out
in [12], one of the major challenges that a learning algorithm
faces in the context of power-law Markov networks is to tackle
the large variation in degrees of nodes. We use a learning
algorithm that resembles the empirical conditional variation
distance thresholding-based algorithm, studied in [16], [17],
[26] for reconstructing the graph structure of Ising model
having degree-bounded, large-girth or Erdös-Rényi graphs.

Given 0 < θmin ≤ θmax, we consider the family of ferro-
magnetic Ising model on p random variables, with bounded
node potentials and edge potentials lying in [θmin, θmax]. We
choose any Ising model from this family with p.m.f. f(·) and
assume G = (V,E) ∈ Gs,a to be its underlying graph. We
define the following mappings for i, j ∈ V , that can be thought
of some distance measure between random variables Xi, Xj :

ρ(i, j) = min
U⊆V :|U |≤2

max
xi, x′i, xU

|f(xi|xj , xU )− f(xi|x′j , xU )|,

This allows us to define the empirical p.m.f., based on xn, as

f̂(x) = f̂(x1, x2, . . . , xp) =
1

n

n∑
l=1

I(xi = x
(l)
i , 1 ≤ i ≤ p),

where I(·) is the indicator function. Note that f̂(·) can be used
to compute the empirical marginal and conditional p.m.f.’s of
f(·). This allows us to define the empirical version of ρ(i, j):

ρ̂(i, j) = min
U⊆V :|U |≤2

max
xi, x′i, xU

|f̂(xi|xj , xU )− f̂(xi|x′j , xU )|.

The learning algorithm φ∗ for obtaining Ĝ, the estimate
of G, is tabulated in form of Algorithm 1; the choice of
threshold ζn,p influences the sample complexity requirement
of φ∗. The motivation behind this learning algorithm comes
from the observation that ρ(i, j) tends to be larger when an
edge exists between i and j than when the edge does not exist.
In other words, the influence of Xj on Xi is more when i and
j are neighbors versus when they are not neighbors. Also, ρ

Algorithm 1 Learning algorithm φ∗ to obtain Ĝ from xn

Require: V = {1, 2, . . . , p}, Ê = ∅
for all i, j ∈ V do

if ρ̂(i, j) > ζn,p then
Ê ← Ê ∪ {(i, j)}

end if
end for

Ensure: Ĝ = (V, Ê)

and ρ̂ are close to each other in value if the number of samples
n is large enough – we corroborate all these facts below.

Non-neighboring Nodes: If i, j ∈ V are non-neighboring
nodes in G, by Lemma III.3 there exists at most two short
paths of length at most r0 connecting i to j with high
probability. We define the l-separator set for two nodes as
the minimum number of nodes that need to be removed for
eliminating paths of length at most l between them. This
implies the r0-separator set size for i, j is at most two with
high probability. Then a strong correlation decay result, related
to separator sets, derived in [16] can be used to show that
ρ(i, j) becomes arbitrarily small as problem size increases.

Theorem IV.2. Consider a ferromagnetic Ising model based
on a uniformly selected graph from Gs,α, where α > 2,
assumptions (A1), (A2) hold, and tanh θmax < (80d̃)−2. Then
ρ(i, j) = o(p−κ) for some constant κ > 0, with probability
≥ 1− p−Θ(1), for any pair of non-neighboring nodes i, j.

Neighboring Nodes: If i, j ∈ V are neighboring nodes, the
following result shows that ρ(i, j) is bounded away from zero:

Theorem IV.3. Consider a ferromagnetic Ising model based
on a uniformly selected graph from Gs,α, where α > 2. Then
ρ(i, j) ≥ 1

16 (1− e−4θmin) for any neighboring nodes i, j.

Performance Analysis: We select ζn,p = 1
32 (1− e−4θmin).

We also assume θmin = Ω((log2 p)
−r) for some constant r >

0. Then the following result describes the performance of φ∗:

Theorem IV.4. Consider a ferromagnetic Ising model based
on a uniformly selected graph from Gs,α, where α > 2,
assumptions (A1), (A2) hold, tanh θmax < (80d̃)−2 and
θmin = Ω((log2 p)

−r) for some constant r > 0. Suppose
ζn,p = 1

32 (1−e−4θmin), and number of i.i.d. samples n satisfies

n >
218

(1− e−4θmin)2f2
min

log2

(p
3

)
.

Then φ∗ recovers the correct graph structure of the ferromag-
netic Ising model with probability ≥ 1 − p−Θ(1). Moreover,
the computational complexity for executing φ∗ is O(p4).

Consequences of Theorem IV.4: Since we have the re-
striction that tanh θmin ≤ tanh θmax ≤ (80d̃)−2 ≤ 80−2,
we can approximate 1 − e−4θmin ≈ 4θmin. Also, it can be
shown that fmin is greater than some constant (or bounded
away from zero), along the lines of [26] (the result in [26]
is demonstrated for Erdos-Renyi graphs, but the same proof



technique can be used to prove that fmin is bounded in
our case). Thus, it is sufficient to have a sample complexity
of n = Ω(θ−2

min log2 p) for φ∗ to recover the correct graph
structure. For the scaling θmin = Θ(d̃−2), this translates to
a sample complexity requirement of n = Ω(d̃4 log2 p) – this
reduces to n = Ω((log2 p)

3) with θmin = Θ((log p)−(3−α)δ1)
for 2 < α < 3, and n = Ω(d4

min log2 p) with θmin = Θ(d−2
min)

for α > 3. Keeping in mind the fact that n = Ω(dmin log2 p) is
the information-theoretic lower bound on sample complexity
for α > 2 to ensure accurate recovery, one can note that the
constraints are more restrictive and the sample complexity
result is worse for the case 2 < α < 3 compared to the
case α > 3. However, since assumption (A2) makes dmin a
constant, the sample complexity associated with the converse
and achievability aspects match in an order-wise sense for
α > 3. A probable reason for the relatively poor performance
of the learning algorithm for 2 < α < 3 could be the structural
nature of power-law graphs in that regime – they tend to have
a big core with many high degree nodes residing in it [23].
So, there is scope for designing improved learning algorithms
with better performance (in both sample and computational
complexity) in this regime of power-law exponent value.

Comparison with Previous Results: The statistical guar-
antees provided by some well-known algorithms in the context
of learning power-law graphical models are examined in [12]
– two generative models of power-law graphs are considered,
the configuration model and Chung-Lu model [23]. The `1-
regularization based learning algorithm [27] needs a sample
complexity of n = Ω(d3

max log2 p) for both configuration and
Chung-Lu power-law graphs (the average degree is assumed
to be Θ(1)). The greedy algorithm, described in [28], per-
forms slightly better and guarantees accurate recovery with
n = Ω(d2

max log2 p) samples. The performance analysis of
the conditional variation distance thresholding estimator [16],
the motivation behind learning algorithm φ∗, exhibits a trade-
off in the case of learning Chung-Lu power-law graph-based
Ising model – restricting the algorithm to run in polyno-
mial time shoots up the sample complexity requirement to
Ω(poly(p) log2 p). In contrast, by performing a careful analy-
sis, we show that learning algorithm φ∗ performs reasonably
well for α > 3. On the other hand, there is an additional
(log2 p)

2 factor in the sample complexity requirement result
for the regime 2 < α < 3 when dmax = Θ(poly(log2 p)).

V. CONCLUSION

We study the problem of learning the graph structure of
discrete Markov networks based on power-law graphs gener-
ated using the configuration model and show that the learning
problem presents a sharp increase in sample complexity, for
ensuring exact graph recovery, when the power-law exponent
is less than 2. Thereafter, we design a algorithm for learning
the structure of power-law graph-based ferromagnetic Ising
model, subject to certain constraints on node and edge po-
tentials. Our learning algorithm is order optimal when the
minimum degree scales as a constant and the power-law

exponent is greater than 3. However, the sample complexity of
our algorithm is sub-optimal when the power-law exponent lies
between 2 and 3, and our future work will focus on improving
the sample complexity requirement results in this range.

REFERENCES

[1] A. Grabowski and R. Kosinski, “Ising-based model of opinion forma-
tion in a complex network of interpersonal interactions,” Physica A:
Statistical Mechanics and its Applications, vol. 361, pp. 651–664, 2006.

[2] F. Vega-Redondo, Complex social networks. Cambridge Press, 2007.
[3] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the

Royal Statistical Society Series B, vol. 48, pp. 259–279, 1986.
[4] M. Choi, J. J. Lim, A. Torralba, and A. S. Willsky, “Exploiting

hierarchial context on a large database of object categories,” in IEEE
CVPR, 2010.

[5] N. Friedman, “Inferring cellular networks using probabilistic graphical
models,” Science, Feb 2004.

[6] A. Ahmedy, L. Song, and E. P. Xing, “Time-varying networks: Re-
covering temporally rewiring genetic networks during the life cycle of
drosophila melanogaster,” tech. rep., 2008. arXiv.

[7] T. Cover and J. Thomas, Elements of Info. Theory. Wiley Interscience,
2006.

[8] M. Jackson, Social and economic Networks. Princeton Univ. Press, 2008.
[9] T. Ideker and R. Sharan, “Protein networks in disease,” Genome Re-

search, vol. 18, pp. 644–652, 2008.
[10] S. Wu and X. Gu, “Gene network: Model, dynamics and simulation,”

Computing and Combinatorics, 2005, vol. 3595, pp. 12–21, 2005.
[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-

ships of the internet topology,” in ACM SIGCOMM, 1999.
[12] R. Tandon and P. Ravikumar, “On the difficulty of learning power law

graphical models,” in IEEE ISIT, 2013.
[13] B. Bollobas, Random graphs. Cambridge Studies in Advanced Mathe-

matics, 2001.
[14] G. Bresler, E. Mossel, and A. Sly, “Reconstruction of Markov random

fields from samples: Some observations and algorithms,” in APPROX,
pp. 343–356, 2008.

[15] N. Santhanam and M. J. Wainwright, “Information-theoretic limits of
selecting binary graphical models in high dimensions,” arXiv, 2009.

[16] A. Anandkumar, V. Y. F. Tan, and A. Willsky, “High-dimensional
structure learning of Ising models: Tractable graph families,” arXiv
Preprint, 2011.

[17] P. Netrapalli, S. Banerjee, S. Sanghavi, and S. Shakkottai, “Greedy
learning of markov network structure,” in IEEE Allerton, 2010.

[18] A. Ray, S. Sanghavi, and S. Shakkottai, “Greedy learning of graphical
models with small girth,” in IEEE Allerton, 2012.

[19] W. Wang, M. J. Wainwright, and K. Ramchandran, “Information-
theoretic bounds on model selection for Gaussian Markov random
fields,” in IEEE ISIT, 2010.

[20] P. Ravikumar and M. Wainwright, “High-dimensional ising model
selection using l1-regularized logistic regression,” Annals of Statistics,
vol. 38, pp. 1287–1319.

[21] A. Anandkumar, V. Y. F. Tan, and A. Willsky, “High-dimensional
Gaussian graphical model selection: Tractable graph families,” arXiv
Preprint, 2011.

[22] I. Mitliagkas and S. Vishwanath, “Strong information-theoretic limits for
source/model recovery,” in Proc. of Allerton Conf. on Communication,
Control and Computing, Monticello, USA, 2010.

[23] F. Chung and L. Lu, Complex graphs and networks. American Mathe-
matical Society, 2004.

[24] A. K. Das, P. Netrapalli, S. Sanghavi, and S. Vishwanath,
“Learning structure of power-law Markov networks,”
http://uts.cc.utexas.edu/∼akdas/plmrf.pdf, 2014.

[25] M. Abdullah, C. Cooper, and A. Frieze, “Cover time of a random graph
with given degree sequence,” Discrete Mathematics, Nov 2012.

[26] R. Wu, R. Srikant, and J. Ni, “Learning graph structure in discrete
Markov random fields,” in IEEE NetSciCom, 2012.

[27] P. Ravikumar, M. J. Wainwright, and J. Lafferty, “High-dimensional
Ising model selection using l1-regularized logistic regression,” Annals
of Statistics, 2008.

[28] A. Jalali, C. C. Johnson, and P. Ravikumar, “On learning discrete
graphical models using greedy methods,” in NIPS, 2012.


