Learning Minimax Estimators via Online Learning

Praneeth Netrapalli
Microsoft Research India

Joint work with
Arun Sai Suggala, Kartik Gupta, Adarsh Prasad and Pradeep Ravikumar
Carnegie Mellon University
Minimax estimation

• Given $X_1, X_2, \ldots, X_n \sim \mathcal{P}_{\theta^*} \in \{\mathcal{P}_\theta : \theta \in \Theta\}$, estimate θ^*

• Goal: $\min_{\hat{\theta}} \mathbb{E}_{X_1, \ldots, X_n} \left[\left\| \hat{\theta}(X_1, X_2, \ldots, X_n) - \theta^* \right\|^2 \right]$

• Really, we do not know θ^*; we would like to do

$$\min_{\hat{\theta}} \max_{\theta} \mathbb{E}_{X_1, \ldots, X_n \sim \mathcal{P}_\theta} \left[\left\| \hat{\theta}(X_1, X_2, \ldots, X_n) - \theta \right\|^2 \right]$$

• Widely studied topic, see [Berger 1985] and [Tsybakov 2008]
Outline

• Background

• **Part I**: Nonconvex online learning

• **Part II**: Minimax estimation via online learning

• **Part III**: Example – minimax estimator for Gaussian mean
Background
Convex-concave minimax optimization

\[
\min_{\hat{\theta}} \max_\theta \ell(\hat{\theta}, \theta)
\]

• If \(\ell(\hat{\theta}, \theta) \) is convex in \(\hat{\theta} \) and concave in \(\theta \) then [Sion 1958]

\[
\min_{\hat{\theta}} \max_\theta \ell(\hat{\theta}, \theta) = \max_\theta \min_{\hat{\theta}} \ell(\hat{\theta}, \theta)
\]

• The optimal solution is called Nash equilibrium

• Several efficient algorithms known: gradient descent ascent, extra gradient methods, fictitious play, algorithms based on online learning
Non (convex-concave)

- $\mathbb{E}_{X_1, \ldots, X_n \sim \mathcal{N}(\theta, \mathbb{I})} \left[\| \hat{\theta}(X_1, X_2, \ldots, X_n) - \theta \|^2 \right]$ is not convex in θ!

- Minimax theorem does not hold

- Instead, $\min_{\mathcal{P}(\hat{\theta})} \max_{\mathcal{Q}(\theta)} \mathbb{E}_{\mathcal{P}, \mathcal{Q}}[\ell(\hat{\theta}, \theta)] - \mathcal{P}(\hat{\theta})$ and $\mathcal{Q}(\theta)$ are probability distributions

- This is bilinear (and so convex-concave)!

- Minimax theorem holds; leads to mixed Nash equilibrium
Can we directly apply standard convex-concave minimax algorithms?

• Not all, gradients and points become infinite dimensional

• Stochastic methods also unclear

• One feasible approach via online learning

• While convex-concave involves convex online learning, this involves nonconvex online learning
Part I
Nonconvex online learning
Example I: Patrolling

Every night

Where do I patrol?
Example II: Portfolio selection

Every month

Where do I invest?

- Stock 1
- Stock 2
- Stock 3
Online learning

• Time: 1, 2, \ldots, t, \ldots, T

• At time t, predict $x_t \in \mathcal{X}$

• After playing x_t, observe loss function ℓ_t

• **Goal**: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(x_t)$
Example I: Patrolling

\[x_t = \text{indicator vector of no patrol} \]
\[= [0, 1, 1, 1, 1] \]

\[c_t = \text{indicator vector of thief} \]
\[= [0, 0, 0, 0, 1] \]

\[\ell_t(x_t) = \langle c_t, x_t \rangle \]
Example II: Portfolio selection

\[x_t = \text{indicator vector of investment} \]
\[= [1,0,0] \]

\[c_t = \text{negative yield of different venues} \]
\[= -[1.1, 0.9, 1.05] \]
Online learning

• At time t, predict x_t and observe loss function ℓ_t
 • ℓ_t fixed ahead of time

• **Goal**: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(x_t)$

• **Benchmark**: $\min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x) — best \text{ fixed policy in hindsight}$

• **Regret**: $\sum_{t=1}^{T} \ell_t(x_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x)$ Minimize regret
History

• Online *linear* learning: dates back to [Brown and von Neumann 1950]

• Online *convex* learning: Heavily studied since [Zinkevich 2003]

• Regret

\[
\sum_{t=1}^{T} \ell_t(x_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x) \leq O(\sqrt{T})
\]
Online *nonconvex* learning

• Computationally intractable even if all $\ell_t(\cdot)$ are the same

What can we do?

1. Weaker notions of regret (such as stationarity in optimization)
 • [Hazan, Singh and Zhang 2017]

2. Assume access to optimization oracles (only deal with learning)
 • [Agarwal, Gonen and Hazan 2018]
Main result

Setting

- $\ell_t(\cdot)$ is Lipschitz continuous
- $x_t \in X$ with bounded diameter

Our result

- **Regret:**
 \[
 \sum_{t=1}^{T} \ell_t(x_t) - \min_{x \in X} \sum_{t=1}^{T} \ell_t(x) \leq O(\sqrt{T})
 \]

- Previous best: $O\left(T^{2/3}\right)$
 [Agarwal, Gonen, Hazan 2018]
Algorithm I: Follow the leader

• For any $t \leq T$ leader $\tilde{x}_t \overset{\text{def}}{=} \arg\min_{x \in X} \sum_{i=1}^{t} \ell_i(x)$

• Cannot compute \tilde{x}_t — do not know $\ell_t(\cdot)$

• Choose $x_t = \tilde{x}_{t-1}$
Algorithm I: Follow the leader

- Choose $x_t \overset{\text{def}}{=} \arg\min_{x \in \mathcal{X}} \sum_{i=1}^{t-1} \ell_i(x)$
- Performs poorly!

- $\mathcal{X} = [-1, 1]$
- $\ell_1(x) = x$
- $\ell_i(x) = \begin{cases} -2x, & i \text{ is even} \\ 2x, & i \text{ is odd} \end{cases}$

Regret $= \Omega(T)$
Algorithm I: Follow the \textit{perturbed} leader

- [Hannan 1957], [Kalai, Vempala 2005]

- $\sigma \sim \text{Unif}(0, \sqrt{T})$

- $x_t \overset{\text{def}}{=} \arg\min_{x \in X} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$

- Regret $= O(\sqrt{T})$

$$\ell_t(x)$$

$$\sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle = \pm x + \langle \sigma, x \rangle$$
Main intuitions

• Recall: adversary fixes choices ahead of time

• Be the leader lemma
 • Recall, $x_t \overset{\text{def}}{=} \arg\min_{x \in X} \sum_{i=1}^{t-1} l_i(x) + \langle \sigma, x \rangle$
 • $E[\sum_{t=1}^{T} l_t(x_{t+1})] - \min_{x \in X} \sum_{t=1}^{T} l_t(x) \leq O(\sqrt{T})$ since $\sigma \sim \sqrt{T}$

• Stability
 • $E[\sum_{t=1}^{T} l_t(x_t)] - E[\sum_{t=1}^{T} l_t(x_{t+1})] \leq L \cdot \sum_{t=1}^{T} E[\|x_t - x_{t+1}\|]$
Stability question

• Recall $x_t \overset{\text{def}}{=} \arg\min_{x \in \mathcal{X}} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$

• How large can $\mathbb{E}[\|x_t - x_{t+1}\|]$ be?

• Agarwal, Gonen, Hazan 2018

$$\mathbb{E}[\|x_t - x_{t+1}\|] \leq O(T^{-1/3})$$

Our improvement $O(T^{-1/2})$
Linear case [Kalai and Vempala 2005]

• $\ell_i(x) = \langle c_i, x \rangle$; $\ell_i(\cdot)$ Lipschitz $\Rightarrow c_i$ bounded

• $\sigma \sim \text{Unif}(0, \sqrt{T})$

• $\sum_{i=1}^{t} \ell_i(x) + \langle \sigma, x \rangle = \langle \sigma + \sum_{i=1}^{t} c_i, x \rangle$

• Key idea:
 • $\sigma + \sum_{i=1}^{t-1} c_i \sim \sigma + \sum_{i=1}^{t} c_i$
 • $x_t \sim x_{t+1}$
The general nonconvex case

- $x_t(\sigma) \overset{\text{def}}{=} \arg\min_{x \in \mathcal{X}} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$

- *Weak monotonicity property:* $x_{t,i}(\sigma + ce_i) \leq x_{t,i}(\sigma) \ \forall \ c \geq 0$

\[\sigma_i \quad \sqrt{T} \quad x_{t,i}(\sigma)\]
Strong monotonicity property

- Suppose $\|x_t(\sigma) - x_{t+1}(\sigma)\|_1 \leq 10d \cdot |x_{t,i}(\sigma) - x_{t+1,i}(\sigma)|$
- Then for $\sigma' = \sigma + 100Lde_i$,

$$\max\left(x_{t,i}(\sigma'), x_{t+1,i}(\sigma')\right) \leq \max\left(x_{t,i}(\sigma), x_{t+1,i}(\sigma)\right) - \frac{9}{10}|x_{t,i}(\sigma) - x_{t+1,i}(\sigma)|$$
Strong monotonicity property

• Suppose \(\|x_t(\sigma) - x_{t+1}(\sigma)\|_1 \leq 10d \cdot |x_{t,i}(\sigma) - x_{t+1,i}(\sigma)| \)

• Then for \(\sigma' = \sigma + 100Lde_i \),

\[
\max (x_{t,i}(\sigma'), x_{t+1,i}(\sigma')) \leq \max (x_{t,i}(\sigma), x_{t+1,i}(\sigma)) - \frac{9}{10} |x_{t,i}(\sigma) - x_{t+1,i}(\sigma)|
\]

\[
E[|x_{t,i}(\sigma) - x_{t+1,i}(\sigma)|] \leq \frac{1}{10d} E[\|x_t(\sigma) - x_{t+1}(\sigma)\|_1] + d \|X\|_{\infty}/\sqrt{T}
\]

\[
E[\|x_t(\sigma) - x_{t+1}(\sigma)\|_1] \leq \frac{1}{10} E[\|x_t(\sigma) - x_{t+1}(\sigma)\|_1] + d^2 \|X\|_{\infty}/\sqrt{T}
\]
Recap

• Follow the perturbed leader

• Be the leader lemma: playing x_{t+1} at time t is very good

• Stability: With perturbations, $\|x_t - x_{t+1}\|$ very small

• Key technical results: Tight monotonicity lemmas

Upshot

Can do nonconvex online learning with access to optimization oracles
Part II

Minimax estimation via online learning
Regret minimization vs best response

<table>
<thead>
<tr>
<th>Regret minimization algorithm (FTPL)</th>
<th>Best response</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\theta}$ player (min)</td>
<td>θ player (max)</td>
</tr>
<tr>
<td>$\mathcal{P}_0(\hat{\theta})$</td>
<td>$\theta_0 = \arg\max_{\theta} \mathbb{E}_{\mathcal{P}_0}[\ell(\hat{\theta}, \theta)]$</td>
</tr>
<tr>
<td>$\mathcal{P}_1(\hat{\theta}) = \text{FTPL}(\theta_0)$</td>
<td>$\theta_1 = \arg\max_{\theta} \mathbb{E}_{\mathcal{P}_1}[\ell(\hat{\theta}, \theta)]$</td>
</tr>
<tr>
<td>$\mathcal{P}_2(\hat{\theta}) = \text{FTPL}(\theta_0, \theta_1)$</td>
<td>$\theta_2 = \arg\max_{\theta} \mathbb{E}_{\mathcal{P}_2}[\ell(\hat{\theta}, \theta)]$</td>
</tr>
</tbody>
</table>
Main idea

• The final output is \(\frac{1}{T} \sum_t P_t(\hat{\theta}) \)

\[
\max_{\theta} \frac{1}{T} \sum_t \mathbb{E}_{P_t(\theta)}[\ell(\hat{\theta}, \theta)] \\
\leq \frac{1}{T} \sum_t \mathbb{P} \mathbb{E}_{P_t(\theta)}[\ell(\hat{\theta}, \theta_t)] \\
\leq \min_{\mathbb{P}(\hat{\theta})} \frac{1}{T} \sum_t \mathbb{E}_{\mathbb{P}(\hat{\theta})}[\ell(\hat{\theta}, \theta_t)] + O\left(\frac{1}{\sqrt{T}}\right) \\
\leq \min_{\mathbb{P}(\hat{\theta})} \max_{\theta} \mathbb{E}_{\mathbb{P}(\hat{\theta})}[\ell(\hat{\theta}, \theta)] + O\left(\frac{1}{\sqrt{T}}\right)
\] (best response of \(\theta \))

(regret guarantee)
Historical background

• Minimax estimation via online learning known from previous work [Freund and Schapire 1996]. Main new development – nonconvex online learning using nonconvex optimization oracles.

• Main challenge: Solve the associated nonconvex problems

• Contrast with other related works: guess one side of the mixed strategy [Berger 1985, Clarke and Barron 1994]
 • Results exist for very special cases only. Not clear how to extend.
Part III

Example – minimax estimator for Gaussian mean
Estimating Gaussian mean

• Given $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\theta, \mathbb{I})$, $\theta \in \mathbb{R}^d$, $\|\theta\|_2 \leq B$, estimate θ

• Goal: $\min_{\hat{\theta}} \max_{\|\theta\|_2 \leq B} \mathbb{E}_{X_1, \ldots, X_n} \left[\|\hat{\theta}(X_1, X_2, \ldots, X_n) - \theta\|^2 \right]$

• For simplicity: $R(\hat{\theta}, \theta) \overset{\text{def}}{=} \mathbb{E}_{X_1, \ldots, X_n} \left[\|\hat{\theta}(X_1, X_2, \ldots, X_n) - \theta\|^2 \right]$

• Several works for the case $n = 1$ but minimax estimator not known for $B \geq 1.16 \sqrt{d}$. [Bickel et al. 1981, Berry 1990, Marchand and Perron 2002]

• Our work resolves this.
Key steps

1. **Symmetry** [Berry 1990]:
 \[
 \min_{\hat{\theta}} \max_{\|\theta\|_2 \leq B} R(\hat{\theta}, \theta) \equiv \min_{\hat{\theta}} \max_{b \in [0,B]} \mathbb{E}_{\theta \sim \mathcal{P}_b}[R(\hat{\theta}, \theta)] \ [Berry \ 1990]
 \]

2. **FTPL:**
 \[
 b_t(\sigma) \leftarrow \arg\max_{b \in [0,B]} \sum_i \mathbb{E}_{\theta \sim \mathcal{P}_b}[R(\hat{\theta}_t, \theta)] + \sigma b
 \]
 \[
 \hat{\theta}_t \leftarrow \min_{\hat{\theta}} \mathbb{E}_{b \sim \mathcal{P}_t}[\mathbb{E}_{\theta \sim \mathcal{P}_b}[R(\hat{\theta}, \theta)]]
 \]
 Nonconvex but 1-d problem
 Bayesian estimator for symmetric prior
Conclusion

• Minimax estimation a fundamental problem in statistics

• Most results obtained through problem specific approaches

• Our work:
 • General approach through nonconvex online learning
 • Efficient algorithm for nonconvex online learning based on certain optimization oracles
 • Efficiently implementing this approach for Gaussian mean estimation and some other related problems