Learning Minimax Estimators via Online Learning

Praneeth Netrapalli

Microsoft Research India

Joint work with

Arun Sai Suggala, Kartik Gupta, Adarsh Prasad and Pradeep Ravikumar

Carnegie Mellon University

Minimax estimation

- Given $X_1, X_2, \dots, X_n \sim \mathcal{P}_{\theta^*} \in \{\mathcal{P}_{\theta} : \theta \in \Theta\}$, estimate θ^*
- Goal: $\min_{\widehat{\boldsymbol{\theta}}} \mathbb{E}_{X_1,\dots,X_n} \left[\left\| \widehat{\boldsymbol{\theta}}(X_1,X_2,\dots,X_n) \boldsymbol{\theta}^* \right\|^2 \right]$
- Really, we do not know θ^* ; we would like to do

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{\boldsymbol{\theta}} \mathbb{E}_{X_1, \dots, X_n \sim \mathcal{P}_{\boldsymbol{\theta}}} \left[\left\| \widehat{\boldsymbol{\theta}}(X_1, X_2, \dots, X_n) - \boldsymbol{\theta} \right\|^2 \right]$$

• Widely studied topic, see [Berger 1985] and [Tsybakov 2008]

$\frac{\text{Nontrivial}}{X \sim \mathcal{N}(\theta, \mathbb{I})}$

$$\frac{\text{James-Stein}}{\left(1 - \frac{(d-2)}{\|X\|^2}\right)} X$$

Outline

Background

• Part I: Nonconvex online learning

• Part II: Minimax estimation via online learning

• Part III: Example – minimax estimator for Gaussian mean

Background

Convex-concave minimax optimization

$$\min_{\widehat{\theta}} \max_{\theta} \ell(\widehat{\theta}, \theta)$$

• If $\ell(\hat{\theta}, \theta)$ is convex in $\hat{\theta}$ and concave in θ then [Sion 1958]

$$\min_{\widehat{\theta}} \max_{\theta} \ell(\widehat{\theta}, \theta) = \max_{\theta} \min_{\widehat{\theta}} \ell(\widehat{\theta}, \theta)$$

- The optimal solution is called Nash equilibrium
- Several efficient algorithms known: gradient descent ascent, extra gradient methods, fictitious play, algorithms based on online learning

Non (convex-concave)

•
$$\mathbb{E}_{X_1,\dots,X_n\sim\mathcal{N}(\theta,\mathbb{I})}\left[\left\|\hat{\boldsymbol{\theta}}(X_1,X_2,\dots,X_n)-\boldsymbol{\theta}\right\|^2\right]$$
 is not convex in $\boldsymbol{\theta}$!

- Minimax theorem does not hold
- Instead, $\min_{\mathcal{P}(\widehat{\theta})} \max_{\mathcal{Q}(\theta)} \mathbb{E}_{\mathcal{P},\mathcal{Q}} \big[\ell \big(\widehat{\theta}, \theta \big) \big] \mathcal{P} \big(\widehat{\theta} \big)$ and $\mathcal{Q}(\theta)$ are probability distributions
- This is bilinear (and so convex-concave)!
- Minimax theorem holds; leads to mixed Nash equilibrium

Can we directly apply standard convexconcave minimax algorithms?

Not all, gradients and points become infinite dimensional

Stochastic methods also unclear

One feasible approach via online learning

 While convex-concave involves convex online learning, this involves nonconvex online learning

Part I Nonconvex online learning

Example I : Patrolling

Every night

Where do I patrol?

Example II: Portfolio selection

Every month

Where do I invest?

Stock 1

Stock 2

Stock 3

Online learning

• Time: $1, 2, \dots, t, \dots, T$

• At time t, predict $x_t \in \mathcal{X}$

• After playing x_t , observe loss function ℓ_t

• Goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(x_t)$

Example I: Patrolling

 $x_t = \text{indicator vector of } no \text{ patrol}$ = [0,1,1,1,1]

 c_t = indicator vector of thief = [0,0,0,0,1]

$$\ell_t(x_t) = \langle c_t, x_t \rangle$$

Example II: Portfolio selection

 x_t = indicator vector of investment

$$= [1,0,0]$$

 c_t = negative yield of different venues

$$= -[1.1,0.9,1.05]$$

Stock 1

Stock 2

Stock 3

$$\ell_t(x_t) = \langle c_t, x_t \rangle$$

Online learning

- At time t, predict x_t and observe loss function ℓ_t
 - ℓ_t fixed ahead of time
- Goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(x_t)$
- Benchmark: $\min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x)$ best fixed policy in hindsight
- Regret: $\sum_{t=1}^{T} \ell_t(x_t) \min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x)$ Minimize regret

History

• Online *linear* learning: dates back to [Brown and von Neumann 1950]

Online convex learning: Heavily studied since [Zinkevich 2003]

Regret

$$\sum_{t=1}^{T} \ell_t(x_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x) \le O(\sqrt{T})$$

Online *nonconvex* learning

• Computationally intractable even if all $\ell_t(\cdot)$ are the same

What can we do?

- 1. Weaker notions of regret (such as stationarity in optimization)
 - [Hazan, Singh and Zhang 2017]
- 2. Assume access to optimization oracles (only deal with learning)
 - [Agarwal, Gonen and Hazan 2018]

Main result

Setting

- $\ell_t(\cdot)$ is Lipschitz continuous
- $x_t \in \mathcal{X}$ with bounded diameter

Our result

• Regret:

$$\sum_{t=1}^{T} \ell_t(x_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(x) \le O(\sqrt{T})$$

• Previous best: $O(T^{2/3})$

[Agarwal, Gonen, Hazan 2018]

Algorithm I: Follow the leader

• For any $t \leq T$ leader $\tilde{x}_t \stackrel{\text{def}}{=} \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^t \ell_i(x)$

• Cannot compute \tilde{x}_t — do not know $\ell_t(\cdot)$

• Choose $x_t = \tilde{x}_{t-1}$

Regret = $\Omega(T)$

Algorithm I: Follow the leader

- Choose $x_t \stackrel{\text{def}}{=} \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{t-1} \ell_i(x)$
- Performs poorly!

•
$$\mathcal{X} = [-1,1]$$

•
$$\ell_1(x) = x$$

•
$$\ell_i(x) = \begin{cases} -2x, i \text{ is even} \\ 2x, i \text{ is odd} \end{cases}$$

Algorithm I: Follow the *perturbed* leader

t-1

• [Hannan 1957], [Kalai, Vempala 2005]

•
$$\sigma \sim \text{Unif}(0, \sqrt{T})$$

•
$$x_t \stackrel{\text{def}}{=} \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$$

• Regret = $O(\sqrt{T})$

Main intuitions

- Recall: adversary fixes choices ahead of time
- Be the leader lemma
 - Recall, $\mathbf{x_t} \stackrel{\text{def}}{=} \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$
 - $\mathrm{E}[\sum_{t=1}^T \ell_t(\mathbf{x_{t+1}})] \min_{x \in \mathcal{X}} \sum_{t=1}^T \ell_t(x) \le O(\sqrt{T})$ since $\sigma \sim \sqrt{T}$
- Stability
 - $E[\sum_{t=1}^{T} \ell_t(\mathbf{x_t})] E[\sum_{t=1}^{T} \ell_t(\mathbf{x_{t+1}})] \le L \cdot \sum_{t=1}^{T} E[\|\mathbf{x_t} \mathbf{x_{t+1}}\|]$

Stability question

• Recall $x_t \stackrel{\text{def}}{=} \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$

• How large can $E[||x_t - x_{t+1}||]$ be?

Our improvement $O(T^{-1/2})$

• Agarwal, Gonen, Hazan 2018

$$E[\|x_t - x_{t+1}\|] \le O(T^{-\frac{1}{3}})$$

Linear case [Kalai and Vempala 2005]

- $\ell_i(x) = \langle c_i, x \rangle$; $\ell_i(\cdot)$ Lipschitz $\Rightarrow c_i$ bounded
- $\sigma \sim \text{Unif}(0, \sqrt{T})$
- $\sum_{i=1}^{t} \ell_i(x) + \langle \sigma, x \rangle = \langle \sigma + \sum_{i=1}^{t} c_i, x \rangle$
- Key idea:
- $\sigma + \sum_{i=1}^{t-1} c_i \sim \sigma + \sum_{i=1}^t c_i$
- $x_t \sim x_{t+1}$

The general nonconvex case

•
$$x_t(\sigma) \stackrel{\text{def}}{=} \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{t-1} \ell_i(x) + \langle \sigma, x \rangle$$

Weak monotonicity property:

$$x_{t,i}(\sigma + ce_i) \le x_{t,i}(\sigma) \ \forall \ c \ge 0$$

Strong monotonicity property

- Suppose $||x_t(\sigma) x_{t+1}(\sigma)||_1 \le 10d \cdot |x_{t,i}(\sigma) x_{t+1,i}(\sigma)|$
- Then for $\sigma' = \sigma + 100Lde_i$,

$$\max \left(x_{t,i}(\sigma'), x_{t+1,i}(\sigma') \right) \le \max \left(x_{t,i}(\sigma), x_{t+1,i}(\sigma) \right) - \frac{9}{10} \left| x_{t,i}(\sigma) - x_{t+1,i}(\sigma) \right|$$

Strong monotonicity property

- Suppose $||x_t(\sigma) x_{t+1}(\sigma)||_1 \le 10d \cdot |x_{t,i}(\sigma) x_{t+1,i}(\sigma)|$
- Then for $\sigma' = \sigma + 100Lde_i$,

$$\max \left(x_{t,i}(\sigma'), x_{t+1,i}(\sigma') \right) \le \max \left(x_{t,i}(\sigma), x_{t+1,i}(\sigma) \right) - \frac{9}{10} \left| x_{t,i}(\sigma) - x_{t+1,i}(\sigma) \right|$$

$$E[|x_{t,i}(\sigma) - x_{t+1,i}(\sigma)|] \le \frac{1}{10d} E[||x_t(\sigma) - x_{t+1}(\sigma)||_1] + d||\mathcal{X}||_{\infty} / \sqrt{T}$$

$$\mathrm{E}[\|x_t(\sigma) - x_{t+1}(\sigma)\|_1] \leq \frac{1}{10} \mathrm{E}[\|x_t(\sigma) - x_{t+1}(\sigma)\|_1] + d^2 \|\mathcal{X}\|_{\infty} / \sqrt{T}$$

Recap

- Follow the perturbed leader
- Be the leader lemma: playing x_{t+1} at time t is very good
- Stability: With perturbations, $\|x_t x_{t+1}\|$ very small
- Key technical results: Tight monotonicity lemmas

<u>Upshot</u>

Can do nonconvex online learning with access to optimization oracles

Part II Minimax estimation via online learning

$$\min_{\mathcal{P}(\widehat{\boldsymbol{\theta}})} \max_{\boldsymbol{\theta}} \mathbb{E}_{\mathcal{P}(\widehat{\boldsymbol{\theta}})} \big[\ell \big(\widehat{\boldsymbol{\theta}}, \boldsymbol{\theta} \big) \big]$$

Regret minimization vs best response

$rac{\hat{ heta}}{\hat{ heta}}$ player (min) Regret minimization algorithm (FTPL)	<u>θ player</u> (max) Best response
$\mathcal{P}_0(\hat{ heta})$	$\theta_0 = \operatorname*{argmax}_{\theta} \mathbb{E}_{\mathcal{P}_0} \big[\ell(\hat{\theta}, \theta) \big]$
$\mathcal{P}_1(\hat{\theta}) = \text{FTPL}(\theta_0)$	$\theta_1 = \operatorname*{argmax}_{\theta} \mathbb{E}_{\mathcal{P}_1} \big[\ell(\hat{\theta}, \theta) \big]$
$\mathcal{P}_2(\hat{\theta}) = \text{FTPL}(\theta_0, \theta_1)$	$\theta_2 = \operatorname*{argmax}_{\theta} \mathbb{E}_{\mathcal{P}_2} \big[\ell(\hat{\theta}, \theta) \big]$

Main idea

• The final output is $\frac{1}{T}\sum_t \mathcal{P}_t(\hat{\theta})$

$$\max_{\boldsymbol{\theta}} \frac{1}{T} \sum_{t} \mathbb{E}_{\mathcal{P}_{t}(\widehat{\boldsymbol{\theta}})} [\ell(\widehat{\boldsymbol{\theta}}, \boldsymbol{\theta})]$$

$$\leq \frac{1}{T} \sum_{t} \mathbb{E}_{\mathcal{P}_{t}(\widehat{\theta})} [\ell(\widehat{\theta}, \theta_{t})]$$
 (best response of θ)

$$\leq \min_{\mathcal{P}(\widehat{\theta})} \frac{1}{T} \sum_{t} \mathbb{E}_{\mathcal{P}(\widehat{\theta})} [\ell(\widehat{\theta}, \theta_{t})] + O\left(\frac{1}{\sqrt{T}}\right) \qquad \text{(regret guarantee)}$$

$$\leq \min_{\mathcal{P}(\widehat{\boldsymbol{\theta}})} \max_{\boldsymbol{\theta}} \mathbb{E}_{\mathcal{P}(\widehat{\boldsymbol{\theta}})} \big[\ell \big(\widehat{\boldsymbol{\theta}}, \boldsymbol{\theta} \big) \big] + O \left(\frac{1}{\sqrt{T}} \right)$$

Historical background

• Minimax estimation via online learning known from previous work [Freund and Schapire 1996]. Main new development – <u>nonconvex</u> online learning using nonconvex optimization oracles.

Main challenge: Solve the associated nonconvex problems

- Contrast with other related works: guess one side of the mixed strategy [Berger 1985, Clarke and Barron 1994]
 - Results exist for very special cases only. Not clear how to extend.

Part III Example – minimax estimator for Gaussian mean

Estimating Gaussian mean

- Given $X_1, X_2, \dots, X_n \sim \mathcal{N}(\theta, \mathbb{I}), \theta \in \mathbb{R}^d, \|\theta\|_2 \leq B$, estimate θ
- Goal: $\min_{\widehat{\theta}} \max_{\|\theta\|_2 \le B} \mathbb{E}_{X_1, \dots, X_n} \left[\left\| \hat{\boldsymbol{\theta}}(X_1, X_2, \dots, X_n) \boldsymbol{\theta} \right\|^2 \right]$
- For simplicity: $R(\hat{\theta}, \theta) \stackrel{\text{def}}{=} \mathbb{E}_{X_1, \dots, X_n} \left[\left\| \hat{\boldsymbol{\theta}}(X_1, X_2, \dots, X_n) \boldsymbol{\theta} \right\|^2 \right]$
- Several works for the case n=1 but minimax estimator not known for $B\geq 1.16\,\sqrt{d}$. [Bickel et al. 1981, Berry 1990, Marchand and Perron 2002]
- Our work resolves this.

Key steps

1. Symmetry [Berry 1990]:

$$\min_{\widehat{\theta}} \max_{\|\theta\|_2 \le B} R(\widehat{\theta}, \theta) \equiv \min_{\widehat{\theta}} \max_{\mathbf{b} \in [0, B]} \mathbb{E}_{\theta \sim \mathcal{P}_{\mathbf{b}}} [R(\widehat{\theta}, \theta)] \text{ [Berry 1990]}$$

2. FTPL:

$$b_t(\sigma) \leftarrow \underset{b \in [0,B]}{\operatorname{argmax}} \sum_i \mathbb{E}_{\theta \sim \mathcal{P}_b} [R(\hat{\theta}_t, \theta)] + \sigma b$$

 $\widehat{\theta}_t \leftarrow \min_{\widehat{\theta}} \mathbb{E}_{b \sim \mathcal{P}_t} \left[\mathbb{E}_{\theta \sim \mathcal{P}_b} \left[R(\widehat{\theta}, \theta) \right] \right]$

Nonconvex but 1-d problem

Bayesian estimator for symmetric prior

Conclusion

- Minimax estimation a fundamental problem in statistics
- Most results obtained through problem specific approaches

• Our work:

- General approach through nonconvex online learning
- Efficient algorithm for nonconvex online learning based on certain optimization oracles
- Efficiently implementing this approach for Gaussian mean estimation and some other related problems