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Minimax estimation /" Nontrivial )
X ~ N (6,1

* Given Xy, X5, ++, X;, ~ Py+ € {Py: 0 € B}, estimate 6~ James-Stein
|

* Really, we do not know 6°; we would like to do

* Goal: minEy, .., 11601, %, ..., X,) — 67

. n 2
m@m mglx [EXl,“',Xn"’fPQ [HH(XLXZJ ""XTL) o 9” ]

* Widely studied topic, see [Berger 1985] and [Tsybakov 2008]
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Background



Convex-concave minimax optimization

min mgax f(é, 9)

D)

* If £(0, 6) is convex in O and concave in 8 then [Sion 1958]

m,éin m@ax f(é, 9) = meax m,éin f(é, 9)

* The optimal solution is called Nash equilibrium

* Several efficient algorithms known: gradient descent ascent, extra
gradient methods, fictitious play, algorithms based on online learning



Non (convex-concave)

* Ex. ..x ~n0,D [HHA(Xl,XZ, v, X)) — 9”2] is not convex in 6!

e Minimax theorem does not hold

* Instead, jr)n(lag rQn(% Ep o [3(9, 9)] — SP(H) and Q(6) are probability

distributions
 This is bilinear (and so convex-concave)!

* Minimax theorem holds; leads to mixed Nash equilibrium



Can we directly apply standard convex-
concave minimax algorithms?

* Not all, gradients and points become infinite dimensional
 Stochastic methods also unclear
* One feasible approach via online learning

* While convex-concave involves convex online learning, this involves
nonconvex online learning



Part |
Nonconvex online learning




Example | : Patrolling

Every night a
H E Where do
HH | patrol?

e



Example Il : Portfolio selection

Every month
[ Stock 1

Where do
Stock 2

| invest?

[ Stock 3




Online learning
* Time: 1,2,---,¢t,---, T
* Attime ¢, predict x; € X

* After playing x;, observe loss function ¥;

e Goal: minimize cumulative loss Y./ _, £, (x;)



Example | : Patrolling )

+ =indicator vector of no patrol
=10,1,1,1,1}

=

‘/Ct: indicator vector of thief A

or = [0,0,0,0,1] G) gy

£e(xe) = (cp )

® lea of oF )



Example Il : Portfolio selection

x; = indicator vector of investment

= [1,0,0]
Stock 1
Rl ()= | [ Stock 2
_ S 2000000, 448
c; = negative yield of different venues [ Stock 3

= —[1.1,0.9,1.05]

£e(xe) = {cp, x¢)



Online learning

* At time ¢, predict x; and observe loss function £,
* ¢, fixed ahead of time

e Goal: minimize cumulative loss Y./ _, £, (x;)

* Benchmark: rrg)rcl YI_,£.(x) — best fixed policy in hindsight
X

* Regret: )./, £, (x;) — min Yi_1¢:(x)  Minimize regret
X



History

* Online linear learning: dates back to [Brown and von Neumann 1950]
* Online convex learning: Heavily studied since [Zinkevich 2003]

* Regret

T T
2 e (xp) — B“E‘;?Z £:(x) < O(\/T)
t=1 t=1



Online nonconvex learning

« Computationally intractable even if all Z;(:) are the same
What can we do?

1. Weaker notions of regret (such as stationarity in optimization)
* [Hazan, Singh and Zhang 2017]

2. Assume access to optimization oracles (only deal with learning)
* [Agarwal, Gonen and Hazan 2018]



Main result

[ Setting ]

* £.(-) is Lipschitz continuous

~N

* x; € X with bounded diameter

\_

J

[ Our result ]

(Ryggret:

T
f:(x;) —min ) £.(x) < O(\/T)
; xXeX ;

* Previous best: O(T2/3)

%garwal, Gonen, Hazan 2018]

~

/




Algorithm |: Follow the leader

def

* Forany t < T leader X, & argmin }./_, £;(x)
XEX

» Cannot compute X; — do not know £, (-)

* Choose x; = X;_4



[Regret = Q(T)]

Algorithm |: Follow the leader

def

e Choose x; % argmin }.:Z; £;(x) £e(x) £ (x)
XEX a A

* Performs poorly!

« X =[-1,1]
c1(x) =x
| —2x,iiseven L’ N
ti(x) = 2x, 1 is odd ° et




Algorithm I: Follow the perturbed leader

e [Hannan 1957], [Kalai, Vempala £ (x)
2005] .
\
\\
. g ~ Unif(O, \/T) A A
def : t—1 -1 1

e x; ¥ argmin };;—; £;(x) + (0, x) .

\_ xeX ) \

\

t—1
* Regret = O(\/T) Z :(x) + (o, xyY=+x+ (o,x)
i=1



Main intuitions

* Recall: adversary fixes choices ahead of time

* Be the leader lemma

* Recall, x; & argmin Y.:Z51 2;(x) + (o, x)
xX€eX

* E[Xi=1 fe(xer1)] - minXis; £0(x) < O(VT) since o ~ T

e Stability
| Z=1 £e(x)] — E| {=1 Ce(xe41)] <L - ZZ=1 E[llx; — x¢51]l]



Stability question

e Recall x; & argmin Y.\Z1 #;(x) + (o, x)
xeX

" Our Improvement :
* How large can E|||x; — x;.1]|] be? O(T_l/z)

. J

* Agarwal, Gonen, Hazan 2018

(-9
E[llx; — x¢411l] < O\T 3



Linear case [Kalai and Vempala 2005}

VT
* £;(x) = {c;,x); *;(-) Lipschitz = c¢; bounded
°0g ~ Unif(O, \/T)
=1 2i(0) +{o,x) = (0 + X, ¢, x)
* Key idea:
o+ Yi_ic~0o+Xi_i¢ - n
Xt ™~ Xt+1 VT Ct




The general nonconvex case

* x,(0) & argmin Y;_1 £;(x) + (o, x)
xeX

* Weak monotonicity property: xei(0+ce) <xi(0) V=0

xti(0)




Strong monotonicity property

» Suppose [|x:(0) — x¢41(0)l; < 10d - |x¢;(0) — xp41,(0)]
* Thenfor o' = o + 100Lde;,

max (xt l(o-,) xt+1 1(0- )) < max (xt 1(0-) Xt+1 L(O-)) T 1N |xt L(O-) xt+1,i(0-)|

xt,i(Gl) xt,i(U)
xt+1,i(0’) xt+1,i(0)




Strong monotonicity property

» Suppose ||x;(0) — x4, (o)l < 10d - |x,;(0) — %441, (0)]
* Thenfor o' = o + 100Lde;,

9
max (xt,i(o-’):xt+1,i(0-’)) < max (Xt,i(U)»Xtﬂ,i(U)) BET |xt,i(0) - xt+1,i(0)|

1
E”xt’i(o') — xt+1,i(0)u = mE[”xt(U) — xe41(0)|1] + d”X”oo/\/T

1
E[llxs(0) — x¢11(0)l1] < 1_OE[||xt(U) — Xe41(0) 1] + dzllxlloo/ﬁ



Recap

* Follow the perturbed leader

* Be the leader lemma: playing x;, ¢ at time t is very good
e Stability: With perturbations, ||x; — x;,1|| very small

* Key technical results: Tight monotonicity lemmas

Upshot

Can do nonconvex online learning with access to optimization oracles



Part Ii
Minimax estimation via online learning




min max Exp(g) [ £(6,6)]

Regret minimization vs best response

6 player (min)
Regret minimization
algorithm (FTPL)

@ player (max)
Best response

Po(6)

0o = argmax Ep [f(é, 9)]
6

P1(0) = FTPL(6,)

6, = argmax Ep, [{’(9, 9)]
6

P,(6) = FTPL(8,, 6,)

6, = argmax Ep, [f(é, 9)]
6



Main idea

 The final output is %Zt iPt(é)

m@ax%zt E?t(g) [f(é, 9)]

< %Zt E?t(@) [f(é, Ht)] (best response of 0)
.1 A 1
< jI}l(lgr; ;Zt IEP@) [3(6’, Ht)] + 0 (\/_T) (regret guarantee)

_ a 1
< j%r; max Ep ) [£(6,0)] + 0 (\/_T)



Historical background

* Minimax estimation via online learning known from previous work
[Freund and Schapire 1996]. Main new development — nonconvex
online learning using nonconvex optimization oracles.

* Main challenge: Solve the associated nonconvex problems

* Contrast with other related works: guess one side of the mixed
strategy [Berger 1985, Clarke and Barron 1994]

* Results exist for very special cases only. Not clear how to extend.



Part Il

Example — minimax estimator for Gaussian
mean




Estimating Gaussian mean

* Given X1, X,, -+, X, ~ N(6,1), 6 € R, ||6]|, < B, estimate 8

+Goal:  min max Ex,..x, [[00t1, X, ., Xo) = 6]

D)

+ For simplicity: R(8,6) & Ex, ..., [0, Xz ., Xa) — 6]

e Several works for the case n = 1 but minimax estimator not known

for B > 1.16 Vd. [Bickel et al. 1981, Berry 1990, Marchand and
Perron 2002]

 Our work resolves this.



Key steps

1. Symmetry [Berry 1990]:
min max R(0,6) = min max Eg-p, [R(é, 9)] [Berry 1990]

Fy

6 0ll,=B 6 be[o0,B]

bi(o) < argmax },; Eg_p, [R(ét, 9)] + ob
o \ /
Bayesian estimatorJ

7 min Epp, [EH~:Pb [R(0, 9)]] for symmetric prior

—

2. FTPL:
[Nonconvex but ]

1-d problem




Conclusion

* Minimax estimation a fundamental problem in statistics
* Most results obtained through problem specific approaches

* Our work:
* General approach through nonconvex online learning

 Efficient algorithm for nonconvex online learning based on certain
optimization oracles

 Efficiently implementing this approach for Gaussian mean estimation and
some other related problems



