What is local optimality in nonconvex-nonconcave minimax optimization?

Chi Jin UC Berkeley

Praneeth Netrapalli
Microsoft Research India

Michael I. Jordan UC Berkeley

Minimax optimization/ Two player zero sum game

- Several applications in economics, evolutionary biology etc.
- Simultaneous vs sequential (Stackelberg) games
- Widely studied in the convex-concave setting
- All versions equivalent (Sion's minimax theorem [Sion 1958])

Minimax theorem [Sion 1958]

If
$$f(x, y)$$
 is convex in x and concave in y , then
$$\min_{x} \max_{y} f(x, y) = \max_{y} \min_{x} f(x, y)$$

- Does not matter who plays first
- Optimal strategy (x^*, y^*) is called Nash equilibrium

$$x^* \in \operatorname{argmin}_x f(x, y^*)$$
 and $y^* \in \operatorname{argmax}_y f(x^*, y)$

- Extensive work on computing Nash equilibria in convex-concave setup
- Most machine learning applications are nonconvex-nonconcave

Machine learning applications

 Generative adversarial networks (for learning a distribution from samples) [Goodfellow et al. 2014]

Training data
$$S = \{x_1, x_2, \dots, x_n\}$$

Machine learning applications

Robust machine learning (for learning models that are robust to attacks)
 [Madry et al. 2017]

Machine learning applications

Mostly nonconvex-nonconcave

Theory and understanding for convex-concave no longer apply

What can we say (and do) in this general setting?

- Inspired by convex vs nonconvex optimization?
 - Local notions of optimality?
 - Algorithms?

Outline

Existing notions of local optimality (and their drawbacks)

New notion of local optimality – local minimax

• Gradient descent ascent – relation to **local minimax**

Future directions

Existing notions of local optimality

- Local Nash equilibrium [Daskalakis and Panageas 2018; Mazumder and Ratliff 2018; Adolphs et al. 2018]
 - Replaces global min and global max with local versions

$$x^* \in \text{LocalMin}_x f(x, y^*)$$
 and $y^* \in \text{LocalMax}_y f(x^*, y)$

- First and second order conditions
 - Replaces optimality conditions with first order stationarity

$$\nabla_x f(x^*, y^*) = 0$$
 and $\nabla_y f(x^*, y^*) = 0$

Or second order stationarity

$$\nabla^2_{xx} f(x^*, y^*) \geqslant 0$$
 and $\nabla^2_{yy} f(x^*, y^*) \leqslant 0$

Local Nash equilibrium

 $x^* \in \text{LocalMin}_x f(x, y^*)$ and $y^* \in \text{LocalMax}_y f(x^*, y)$

Local Nash equilibrium

Unfortunately (both global and local Nash) do not always exist

$$\sin(x+y) \qquad x^* \in \text{LocalMin}_x f(x,y^*) \Rightarrow x^* + y^* = \left(2k\pi + \frac{\pi}{2}\right)$$

$$y^* \in \text{LocalMax}_y f(x^*,y) \Rightarrow x^* + y^* = \left(2k\pi - \frac{\pi}{2}\right)$$

Local Nash – First and second order conditions

$$\nabla_x f(x^*, y^*) = 0$$
 and $\nabla_y f(x^*, y^*) = 0$

$$\nabla_{xx}^2 f(x^*, y^*) \geqslant 0$$
 and $\nabla_{yy}^2 f(x^*, y^*) \leqslant 0$

• Again, does not always exist e.g., sin(x + y)

Main observation

The local notions considered so far are inspired by simultaneous games

In convex-concave setting, simultaneous/sequential does not matter

• In nonconvex-nonconcave setting, it is important

<u>Takeaway</u>: Consider local notions of <u>sequential</u> (aka Stackelberg)
 <u>equilibria</u> (which is guaranteed to exist unlike Nash equilibrium)

Global sequential/Stackelberg equilibrium

$$y^* \in \operatorname{argmax}_y f(x^*, y)$$
 and $x^* \in \operatorname{argmin}_x \left(\max_y f(x, y) \right)$

- In essence, fix the order $\min_{x} \max_{y} f(x, y)$ (or viceversa) and solve $\min_{x} g(x)$, where $g(x) \stackrel{\text{def}}{=} \max_{y} f(x, y)$
- Also known as global minimax
- Always exists under mild conditions
- Finding it is of course hard in general

Towards local Stackelberg equilibrium

Towards local Stackelberg equilibrium

$$y^* \in \text{LocalMax}_y f(x^*, y)$$
 and $x^* \in \text{LocalMin}_x \left(\text{LocalMax}_y f(x, y) \right)$

• LocalMax f(x, y) can be achieved far away from y^* $y \in B(y^*)$

Local Stackelberg equilibrium

$$y^* \in \text{LocalMax}_y f(x^*, y) \text{ and } x^* \in \text{LocalMin}_x \left(\max_{y \in B_{\epsilon}(y^*)} f(x, y) \right)$$

$$g_{\epsilon,y^*}(x) \stackrel{\text{def}}{=} \max_{y \in B_{\epsilon}(y^*)} f(x,y)$$

Can also call it

Local minimax

$$x^* \in \operatorname{LocalMin}_{x} g_{\epsilon, y^*}(x) \ \forall \ \epsilon \leq \epsilon_0$$

Also independently by [Fiez et al. 2019]

Some results on local minimax

- May also not exist e.g., $y^2 2xy$ on $[-1,1] \times [-1,1]$
 - Reason: Set of local maxima (in y) is discontinuous as a (set) function of x

Local Nash equilibria ⊆ Local minimax

 Since global minimax always exists, it implies global minimax not always local minimax

First and second order conditions

• First order: $\nabla_x f(x^*, y^*) = 0$ and $\nabla_y f(x^*, y^*) = 0$

• 2nd order sufficient:

$$\nabla_{xx}^2 f - \nabla_{xy} f (\nabla_{yy} f)^{-1} \nabla_{yx} f > 0$$
 and $\nabla_{yy}^2 f (x^*, y^*) < 0$

- Also need not exist
 - 2^{nd} order Nash $\subseteq 2^{nd}$ order local minimax

Quick recap

 Existing notions of local optimality for minimax problems inspired by equilibrium notions for simultaneous games

 We introduce a new notion of local optimality inspired by equilibrium notion for sequential games; more relevant for nonconvexnonconcave settings

- Local minimax suffers from nonexistence issues but
 - Local Nash ⊆ Local minimax
 - When it exists, it is more relevant for practical minimax problems

Algorithms

Gradient descent ascent

$$x_{t+1} = x_t - \eta \nabla_x f(x_t, y_t)$$

$$y_{t+1} = y_t + \eta \nabla_y f(x_t, y_t)$$

- Algorithm again inspired by simultaneous games
- In practice, multiple steps of ascent for one step of descent signifying the order $\min_{x} \max_{y} f(x, y)$
- Need not converge could cycle; several alternatives proposed e.g., optimistic gradient methods, extra gradient methods etc. [Nemirovski 2004; Daskalakis et al. 2017]

Fixed points of gradient descent ascent

Widely used in practice with out any averaging

Motivates the study of fixed points

• We study the flow version of γ -GDA

$$\dot{x} = -\nabla_x f(x, y)$$

$$\dot{y} = +\gamma \nabla_y f(x, y)$$

• γ indicates the number of ascent steps per descent steps

Stable fixed points

- A fixed point of a dynamical system (such as γ -GDA flow) is called stable if points close to it converge to it.
 - Jacobian of the dynamical system has spectral radius < 1.
- Set of stable fixed points changes with γ
- For $\min_{x} \max_{y} f(x, y)$, we are interested in $\gamma \gg 1$

Main result

Local minimax points \cong Stable fixed points of ∞ -GDA

Equality holds up to some degenerate points

Gives a game theoretic meaning to limit points of GDA

• Can extend results to approximate local minimax points and stable fixed points of $\gamma(<\infty)$ -GDA

Summary

Minimax optimization/Two player zero sum games important

- Very little understanding in nonconvex-nonconcave setting
 - Sequential games quite important

 Propose local notions of sequential equilibria; existing works only do for simultaneous equilibria

Show a close relationship between local minimax and GDA

Future directions

• Our results unsatisfactory – nonexistence a serious issue

- Other notions of local optimality?
 - Computational restrictions on the adversary
- Is convergence to a point important? Can we harness limit cycles in the nonconvex-nonconcave setting?

Better algorithms?